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Abstract: The coronavirus COVID-19 has recently started to spread rapidly in Malaysia. The 
number of total infected cases has increased to 3662 on 05 April 2020, leading to the country being 
placed under lockdown. As the main public concern is whether the current situation will continue 
for the next few months, this study aims to predict the epidemic peak using the Susceptible–
Exposed–Infectious–Recovered (SEIR) model, with incorporation of the mortality cases. The 
infection rate was estimated using the Genetic Algorithm (GA), while the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) model was used to provide short-time forecasting of the number of 
infected cases. The results show that the estimated infection rate is 0.228 ± 0.013, while the basic 
reproductive number is 2.28 ± 0.13. The epidemic peak of COVID-19 in Malaysia could be reached 
on 26 July 2020, with an uncertain period of 30 days (12 July–11 August). Possible interventions by 
the government to reduce the infection rate by 25% over two or three months would delay the 
epidemic peak by 30 and 46 days, respectively. The forecasting results using the ANFIS model show 
a low Normalized Root Mean Square Error (NRMSE) of 0.041; a low Mean Absolute Percentage 
Error (MAPE) of 2.45%; and a high coefficient of determination (R2) of 0.9964. The results also show 
that an intervention has a great effect on delaying the epidemic peak and a longer intervention 
period would reduce the epidemic size at the peak. The study provides important information for 
public health providers and the government to control the COVID-19 epidemic. 

Keywords: COVID-19; SEIR model; epidemic peak; infection rate; basic reproductive number; 
ANFIS; GA 

 

1. Introduction 

Coronavirus disease (COVID-19) is an infectious disease first reported in China [1]. COVID-19 
has been confirmed on 25 January 2020 in Malaysia and currently continues to spread fast in the 
country, which seriously jeopardizes the lives of elderly people as well as those of any age who 
experience a serious underlying medical condition [2]. Figure 1 shows the accumulated number of 
infected cases due to COVID-19 from 25 January to 05 April in Malaysia. It can be observed that the 
COVID-19 outbreak started to be a pandemic after 27 February, such that more than 98.77% of the 
total infected cases was reported after this date. This outbreak is mostly attributed to a special 
religious gathering of more than 15,000 persons between 27 February and 2 March at a local mosque, 
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which was an infection cluster and the main source of the spike in COVID-19 cases according to the 
Ministry of Health in Malaysia [3]. The spread of the virus came from the foreign participants who 
came into Malaysia and participated in the gathering. The sudden increase in the number of infected 
cases after 12 March is probably due to the fact that infected people without COVID-19 symptoms 
could significantly spread the infection [4]. Furthermore, the diagnostic tests were initially only made 
available to those who attended the religious gathering. 

Unfortunately, COVID-19 cannot be controlled as there is no proven pharmaceutical-based 
treatment up to now. However, other behavioral strategies, such as lockdown and movement control 
of people, can be effective to reduce the number of new cases and delay the epidemic peak. The 
Malaysian Government has promulgated the restricted activities order on 18 March, which prohibits 
all mass movements and gatherings across the country, including religious, sports, social, and 
educational activities. The movement control order was implemented in several stages with the 
strictness and punishment increasing with each stage to ensure that the public conform to the 
restrictions. However, exclusions are given to public markets, grocery stores, and convenience stores 
selling food and essential items. The main public concern is whether the epidemic will continue until 
August 2020, which would affect the economy, and in particular the tourism plan of “Visit Malaysia 
2020” that attracts Middle Eastern and Chinese tourists during the holiday season from June through 
August. Therefore, the short- and long-term prediction of the COVID-19 epidemic is needed to 
provide important information for healthcare providers and government that would help them to 
implement effective intervention measures and policies. 

 

Figure 1. Growth in the total number of infected cases in Malaysia. 

Mathematical modeling plays an important role in predicting the epidemic peaks of COVID-19 
using real-time historical data [5]. Many statistical and numerical models have been used to predict 
the COVID-19 outbreaks, such as the Logistic Growth model [6], stochastic Susceptible–Infectious–
Removed (SIR) model [7], and Natural Growth model [8]. However, the SEIR (Susceptible–Exposed–
Infectious–Recovered) model is still the most widely used to characterize the epidemic peak of 
COVID-19 in China [9–11], Japan [12], Italy [13], and Iran [14]. Besides, the SEIR model was used to 
compare the effect of the lockdown of Hubei province on the infection rates in Beijing and Wuhan 
[15]. On the other hand, in forecasting the number of infected cases for the upcoming few days, the 
mathematical models are not effective as many parameters should be daily updated and estimated. 
Thus, the accuracy of short-time forecasting using parametric models may not be high [16]. 

The infection rate (or transmission rate) parameter provides information on the probability of 
transmission of COVID-19 from an infectious individual to susceptible individuals [17]. It is one of 
the two components in the basic reproductive number by which the continuous increase or decrease 
in the infected cases is decided. In calculating the infection rate, the most common method is the 
asymptotic statistical theory [18], in which the least-squares method is used to quantify the 
uncertainty associated with infection rate estimation. However, the least-squares method is subjected 
to low accuracy that accompanies the estimation of the infection rate. A possible solution is to run the 
estimation process 10,000 times and then obtain the normal distribution of the infection rate values 
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with 95% confidence intervals, which would decrease the uncertainty and increase the accuracy as in 
[12,19]. This method highly increases the time of the estimation process, especially when the range of 
the hypothesized infection rate is relatively large with a small resolution. 

To our knowledge, there are no scientific studies related to the pandemic of COVID-19 spread 
in Malaysia. Thus, this study is conducted to (1) estimate the infection rate using the Genetic 
Algorithm (GA); (2) predict the epidemic peak of COVID-19 using the SEIR model, incorporating also 
the mortality in the population due to COVID-19; and (3) forecast the number of infected cases for 
the upcoming five days using the Adaptive Neuro-Fuzzy Inference System (ANFIS) predictive 
model. The available data of infected cases from 25 January to 05 April 2020 in Malaysia was used to 
calibrate the SEIR model. For forecasting, the data from 22 to 31 March was used to train and test the 
ANFIS model, while the data from 01 to 05 April was used to validate the ANFIS model. 

2. Methods 

2.1. SEIR Model for Peak Prediction 

The SEIR model that characterizes the epidemic COVID-19 outbreaks is described as follows 
[20,21]: 

dS(t)/d(t) = −βS(t)I(t), 

dE(t)/d(t) = βS(t)I(t) – αE(t), 

dI(t)/d(t) = αE(t) – γI(t) – MI(t), 

dR(t)/d(t) = γI(t), 

dD(t)/d(t) = MI(t) 

(1) 

where S, E, I, R, and D represent the number of susceptible, exposed (not yet infectious), infective, 
recovered, and death cases given at time t > 0. The coefficients β, α, γ, and M denote the infection, 
onset, removal, and mortality rates. Based on the recent studies related to COVID-19 [22–25], the 
incubation (α-1) and infectious (γ−1) periods are 5 days and 10 days, respectively. Thus, the α and γ 
values are 0.2 and 0.1, respectively. The total number of deaths and confirmed cases up to 5 April are 
61 and 3662, respectively, and thus the mortality rate M is 0.016 (61/3662). We fixed the unit time to 
be 1 day and S + E + I + R + D = 1, such that each population implies the proportion to the total 
population. Let assume that there is one infected case recorded at time t = 0 among the Malaysian 
population of N = 32.6 × 106 [26]; that is, X(0) = рNI(0) = 1, where 

X(t) = рNI(t),  (2) 

where X is the number of infected cases that are identified at time t, and p is the identification rate 
such that we obtain I(0) = 1/(р × 32.6 × 106). The block diagram of the SEIR model is attached in 
Appendix A as Figure A1. It is assumed that there are no exposed, recovered, and death cases at t = 
0, and hence, 

S(0) = 1 – (E(0) + I(0) + R(0) + D(0)) = 1 – ଵ
௣ே

 (3) 

In Malaysia, the COVID-19 test is mainly performed on those with close contacts to the patients 
as well as on those with COVID-19 symptoms. We assume that the identification rate is not 
significantly dependent on the test kit availability as the Malaysian government is able to perform 
the test for 11,500 persons a day and the average number of daily tested cases is 2500 persons [27]. In 
[28], 3662 cases are currently confirmed among the tested 43,595 infected cases from 25 January to 05 
April. Based on that, p is equal to 0.084 (3662/43,595). The basic reproductive number ℛ0 represents 
the expected number of secondary cases resulted from an infected individual [29]. It is calculated as 
the leading eigenvalue of the next generation matrix G = FV–1 [30], where 

F =ቂ0 (0)ܵߚ
0 0

ቃ, V =൤ ߙ 0
ߙ−  ൨, (4)ߛ
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where F is a new infection, while V represents the transfers of infections from one compartment to 
another [5]. Then, we obtain 

ℛ0 = 
γ

)(Sβ 0
=

γ
β

(1 –  ଵ
௣ே

) ≈
γ
β

. (5) 

It is obvious that the basic reproductive number only depends on the infection rate (β) and the 
removal rate (γ). Besides, the influence of the identification rate on ℛ0 is negligible as the population 
number (N) is 32.2 × 106. The coefficient parameters of the SEIR model are summarized in Table 1. 
Note that the estimation of β and ℛ0 values are presented in the next subsection. 

Table 1. Coefficient values for the Susceptible–Exposed–Infectious–Recovered (SEIR) model. 

Coefficient Description Value 
α Onset rate 0.2 
γ Removal rate 0.1 
M Mortality rate 0.016 
N Malaysia population 32.6 × 106 

p Identification rate 0.084 

2.2.β. Estimation using GA 

In this study, the estimation of the infection rate is accomplished using the Genetic Algorithm 
[19]. Let us assume X(t) (described in Equation (2)), t = 0, 1, …, 72, is the number of daily infected 
people due to COVID-19 in Malaysia from 25 January to 05 April. We assume X(t) is subjected to the 
Poisson noise, which reflects the fluctuations of the number of infected cases, so that 

ܺ̇(t) = X(t) + εX(t)ξ, Poisson noise = εX(t)ξ, (6) 

where ܺ̇ is our deterministic model with Poisson noise, while ε is a random variable from a normal 
distribution with a mean zero and a standard deviation of 1. The ξ is equal to 0.5, such that the 
variance of the error scales is linear with X(t) and this value refers to the Poisson noise as described 
by [31]. The classical GA was applied to estimate the β value that minimizes the cost function. The 
cost function is represented by the sum of squares, as in Equation (7). The β value ranged from the 
lower bound to upper bound values. The lower and upper bounds of the β value were selected as 0.2 
and 0.4, respectively. The minimum cost function C(β″) is defined as in Equation (8). 

C(β) = ∑ (ݐ)ܺൣ − ൧ଶ,଻ଶ(ݐ)̇ܺ
௧ୀ଴  (7) 

C(β″) = min0.2 ≤ β ≤ 0.4 C(β), (8) 

The classical GA algorithm was then implemented to find the optimum β values that minimize 
the cost function using five steps, as follows [32–34]: 

a. Population initialization: In order to find a solution to the problem of the cost function, the 
GA initially creates a number of populations that randomly encodes the chromosomes 
(individuals). Then, the cost values of the generated population are evaluated. 

b. Selection: In this process, each individual identified by its associated cost is ranked and the 
corresponding individual fitness is selected. According to fitness, the best chromosomes from 
the population are then selected such that better fitness has a bigger chance to be selected. 
Subsequently, the solutions selected from one population are implemented to form a new 
population. This process is motivated by the new population potentially being better than 
the previous one. The selection process is performed using a certain function that fixes the 
generation gap. The selected individuals are then recombined. 

c. Crossover: To make new offspring (children) for the following iteration, the selected 
individuals (parents) have to undergo a crossover with a crossover probability. However, if 
there is no crossover performed, the offspring is an exact copy of the parents. 
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d. Mutation: In this process, the information in the chromosomes is randomly modified. The 
genes occasionally mutate to be converted to novel genes. Based on mutation, it is possible 
to control the multifariousness of the population as well as to enhance the search capacity of 
the search scheme. 

e. Evaluation: For each individual, the cost function of the optimization problem is calculated. 
The stopping criterion of the GA is the number of iterations after which the process is 
stopped. For each iteration, the β value that has the minimum cost function is recorded. The 
distribution of the β values is then approximated by a normal distribution with a mean and 
standard deviation. 

The flowchart of the GA for β estimation is demonstrated in Figure 2. The GA parameters are 
provided in Table 2 and obtained based on the trial and error method. The Optimization Toolbox of 
the MATLAB® software (MathWorks Inc.) was used to implement and run the GA algorithm. 

  

Figure 2. Genetic Algorithm (GA) flowchart for β estimation. 

Table 2. GA parameters. 

Parameter Value Parameter Value 
Population size 200 Mutation rate 0.02 

Number of iterations 1000 Mutation percentage 0.9 
Crossover percentage 0.95   

2.3. ANFIS for Short-Term Forecasting 

ANFIS is a nonparametric model used to solve a nonlinear problem with a small dataset in one 
framework. It has a powerful hybrid learning capability using an Artificial Neural Network (ANN) 
and a Fuzzy Logic model to generate an effective processing tool for prediction [35]. The core element 
of ANFIS is the Fuzzy Interference System (FIS) that is embedded into a framework of adaptive 
networks that use “IF–THEN” rules to model the behavior of an uncertain system. These adaptive 
networks contain a number of adaptive nodes connected through directional links. Each adaptive 
node has a modifiable parameter updated using the fuzzy learning rule aiming to minimize the 
errors. In this study, the FIS system uses one input x and one output y. The ANFIS model structure 
is shown in Figure 3. The first order Sugeno fuzzy model with fuzzy “IF–THEN” rules is employed 
as follows [36]: 

Rule 1: if x is A1 then y1= P1 x + r1, (9) 

Rule 2 : if x is A2 then y2 = P2 x + r2. (10) 

Layer 1 contains the member functions (MFs) of the inputs and generates the input variables for 
Layer 2. Each node in this layer is adaptive using Equation (11). The MF type used in this study is the 
Gaussian function, for which 0 and 1 are the lowest and highest values, respectively. 
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Qi = μAi (x), where μ (x) is MF. (11) 

  

Figure 3. ANFIS structure. 

Layer 2 is a membership layer in which the weights of MFs are computed and considered. Input 
variables of this layer are obtained from the first layer. Noted that, the layer’s nodes are fixed nodes. 
The output of the second layer is a product of all incoming inputs and described as in Eq.12, where 
wi represents the weight strength of one rule. 

wi = μ (x)i μ (x)i+1 and i = 1,2. (12) 

In Layer 3 (rule layer), the weight function is normalized and the outputs of this layer are called 
normalized weights or firing strengths. The normalization is described as: 

ഥ௜ݓ = ௪೔
௪భା௪మ

,  and i = 1,2. (13) 

Layer 4 is the defuzzification layer such that the output from Layer 3 is multiplied with the 
Sugeno fuzzy rule function as follows: 

௜ܳ
ସ = ݓ௜

∗y = ݓ௜
∗(pix + ri), (14) 

Layer 5 is the output layer in which the inputs and outputs from the previous layer are 
formulated. Furthermore, this layer converts the results into a crisp output. Thus, all incoming inputs 
are sum up producing the overall output as follows: 

௜ܳ
ହ = ∑ ௜ݓ

௜௜ݕ∗ = ∑ ௪೔ ௬೔
∑ ௪೔೔

 (15) 

Noted that the ANFIS MFs parameters are adjusted (tuned) using the hybrid method of 
backpropagation and least square techniques [37]. The Neuro-Fuzzy Designer of Matlab® Software 
(MathWorks Inc.) is used to implement the ANFIS parameters that are summarized in Table 3. In this 
study, as the number of infected cases is nonlinearly changed from day to day, the ANFIS model is 
used. The ANFIS model forecasts the numbers of infected cases for the upcoming 5 days based on 
the numbers of infected cases for the last 10 days. The dataset of 10 days is divided into training (70%) 
and testing (30%) datasets which are implemented in the ANFIS model. After that, the trained ANFIS 
model is used to forecast the numbers of cases for the next 5 days. The input and output variables are 
day number and number of infected cases, respectively. 

Table 3. Adaptive Neuro-Fuzzy Inference System (ANFIS) parameters. 

Parameter Method/Value Parameter Method/value 
Fuzzy structure Sugeno-type No. of epochs 300 
Rules clustering Grid partition Input Day number 

MF type Gaussian Output Infected cases 
Optimization method Hybrid Output MF constant 

 
In order to investigate the performance of the ANFIS model, the Root Mean Square Error mean 

(RMSE), normalized RMSE (NRMSE), Mean Absolute Percentage Error (MAPE), and coefficient of 
determination (R2) were used as follows [38,39]: 
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RMSE = ටଵ
௧

∑ ௔௖௧௨௔௟ݕ) − ௘௦௧௜௠௔௧௘ௗ)ଶ௧ݕ
௧ୀ଴ , and 

NRMSE = ோெௌா
௬೘ೌೣି௬೘೔೙

, 
(16) 

MAPE =  ௬ೌ೎೟ೠೌ೗ି௬೐ೞ೟೔೘ೌ೟೐೏
௬ೌ೎೟ೠೌ೗

 (17) 

ܴଶ = 1 − ∑ (௬ೌ೎೟ೠೌ೗ି௬೐ೞ೟೔೘ೌ೟೐೏)మ೟
೟సబ

∑ (௬ೌ೎೟ೠೌ೗ି௬ೌೡ೐ೝೌ೒೐)మ೟
೟సబ

. (18) 

3. Results 

3.1. Infection Rate (β) Estimation 

GA was applied to estimate the optimum infection rate between 0.2 ≤ β ≤ 0.4 by minimizing the 
cost function described in Equation (8). Figure 4 depicts the cost values for 1000 iterations. It is 
observed that the GA searching for the minimum cost value converges to the value of 1.098 × 10−9 at 
the iteration number 819, which indicates that there is no better cost value than 1.098 × 10−9 based on 
GA. The optimum β values obtained for the entire population size of 200 is shown in Figure 5. The β 
values are approximated by the normal distribution and, subsequently, the infection rate β is 0.228 ± 
0.013. Based on Equation (5), the basic reproductive number is 2.28 ± 0.13 as γ = 0.1. 

 

Figure 4. Cost values of 1000 iterations. 

   

Figure 5. Normal distribution of optimum β values. The dotted line represents the mean value. 
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3.2. Epedimic Peak Prediction 

Given that the major outbreak occurs after the second wave, it is assumed that the influence of 
the number of cases reported before the second wave is negligible in estimating the identification and 
infection rates. Besides, this assumption is considered due to the absence of the reported numbers 
related to cases that tested negative during the first wave. The epidemic peak is estimated when a 
maximum is attained within one year, such that X(tmax) = max0 < t < 365 X(t). Based on the current report, 
the p is around 0.084. Subsequently, Figure 6 shows a one-year behavior of X(t) for the determined 
infection rate β = 0.228 ± 0.013. 

It is observed that the epidemic peak may occur between 170 (β = 0.241) and 200 (β = 0.215) with 
an average of 184 (β = 0.228). This indicate that, starting from 25 January, the predicted epidemic peak 
is on 26 July (t = 184), with deviation from 12 July (t = 170) to 11 August (t = 200). The COVID-19 
pandemic will last until 15 December 2020 (t = 326), with the deviation ranging from 22 November 
2020 (t = 303) to 12 January 2021 (t = 354). 

Based on the entire period since the COVID-19 onset in Malaysia, the p value ranges from 0.01 
to 0.084. Hence, we also estimate the epidemic peak at p = 0.01. Figure 7 shows the X(t) over one year 
for β = 0.228 ± 0.013. As seen, the predicted epidemic peak is 19 June (t = 147) and the uncertainty 
range is from 08 June (t = 136) to 02 July (t = 160). The COVID-19 pandemic will last until 29 September 
(t = 249) with the deviation ranging from 13 September (t = 233) to 19 October (t = 269). In contrast to 
the basic reproductive number ℛ0, it is clear that the epidemic peak and size are responsive to the 
identification rate p. Furthermore, a lower identification rate leads to a lower number of infected 
cases, such that the number of infected cases decreases from 2.582 × 105 to 3.077 × 104 at the epidemic peak 
with p = 0.01. 

 
Figure 6. Real-time variation in the number of infected cases identified at time t for p = 0.084 and β = 
0.215, β = 0.228, and β = 0.241. The text arrows represent the tmax for each infection rate. 

 
Figure 7. Real-time variation in the number of infected cases identified at time t for p = 0.01 and β = 
0.215, β = 0.228, and β = 0.241. The text arrows represent the tmax for each infection rate. 
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3.3. Epidemic Peak after Possible Interventions 

In this subsection, the effect of possible interventions is investigated. In Malaysia, all universities, 
schools, and workshop places have been closed and most of the social events have been canceled 
from 17 to 26 March to eliminate the contact risk. However, the government has extended the closure 
to 14 April as the number of infected cases is still rising by an average of 170 cases per day. Thus, the 
current governmental effort seems to be limited to contain the COVID-19 up to now. 

We assume that the governmental and social efforts can reduce the infection rate β = 0.228 by 
25% of its value (βnew = 0.17) during the period from 05 April (t = 72) to the desired day (t= T > 72), and 
we fix p to 0.084 in what follows. Firstly, it is assumed that the intervention is adopted for 2 months; 
that its, T is equal to 134 (72 + 62). In this situation, the epidemic peak tmax is shifted 30 days later from 
26 July to 26 August. It is clear that the epidemic size remains relatively unchanged. On the other 
hand, if the interventions are adopted for three months from 05 April to 04 July (T = 72 + 92 = 164), 
then the epidemic peak tmax is moved back from 26 July to 09 September. It can be observed that the 
epidemic size is significantly reduced. Figure 8 shows the real-time prediction of infected cases that 
are identified between t = 0 and t = 365 for no intervention, two months intervention, and three 
months intervention. 

  

Figure 8. Real-time variation in the number of infected cases (0 ≤ t ≤ 365) for p = 0.084. The red dotted 
lines represent the epidemic peak. 

We can also generalize the desired day for possible interventions over 72 < T < 365, as shown in 
Figure 9a. It is observed that the epidemic peak tmax is linearly delayed as the intervention period 
increases from 72 ≤ T ≤ 263 and then fixed to tmax for T > 263. 

 
(a) 

 
(b) 

Figure 9. The relationship between the desired day for intervention T and (a) the epidemic peak tmax; 
(b) the number of infected cases at epidemic peak tmax. 

The figure also indicates that the interventions have a positive effect to delay the epidemic peak, 
which may give the government more time to contain the COVID-19 and flatten the curve. Figure 9b 
shows the relationship between the intervention period (T) and the number of infected cases at the 
epidemic peaks X(tmax). It is observed that the number of infected cases is monotonically declined and 
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fixed as T increases. Interestingly, the change in the number of infected cases is rapidly increased for 
T > 72. This implies that an early intervention over a relatively small duration can be effective to 
reduce the epidemic size and flatten the curve. 

3.4. Short-Term Forecasting 

The ANFIS model was mainly used to forecast the infected cases for the next five days based on 
the historical data of 10 days. Firstly, the historical data is randomly split into training and testing 
datasets according to a 70%:30% ratio to make sure the model is not subjected to overfitting. Figure 
10 shows the training and testing errors over the 300 epochs (iterations). Estimated (ANFIS output) 
and actual infected cases are depicted in Figure 11. Table 4 presents the RMSE, NRMSE, MAPE, and 
R2 obtained while training the ANFIS model using the training and testing datasets. 

 
Figure 10. The upper and lower curves represent the training and testing errors, respectively. 

Table 4. Performance of the ANFIS model. 

Parameter Training Data Testing Dataset 
RMSE 18.53 46.87 

NRMSE 0.012 0.032 
MAPE 1.31% 2.79% 

R2 0.9973 0.9998 
 

 
(a) 

 
(b) 

Figure 11. Estimated and actual infected cases using the (a) training dataset and (b) testing dataset. 

Secondly, the developed ANFIS model was then used to forecast the number of infected cases 
for the next five days. The results of the forecasted and actual number of infected cases are presented 
in Figure 12. The performance of the ANFIS model to forecast is as follows: the RMSE, NRMSE, 
MAPE, and R2 values are 96.8, 0.041, 2.45%, and 0.9964, respectively. These results indicate a very 
low RMSE, NRMSE, and MAPE, but a high R2. 
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Figure 12. Forecasting results for the next five days. 

4. Discussion 

This study mainly aims to (1) estimate the infection rate using the GA algorithm; (2) predict the 
epidemic peak of COVID-19; and (3) forecast the number of infected cases for the upcoming five days 
based on historical data of the last ten days. First, the confirmed cases from 25 January to 05 April 
was used to find the coefficient parameters of the SEIR model. Subsequently, the GA was applied to 
find the infection rate value that minimizes the function of the SEIR model with Poisson noise. As a 
result, the infection rate is 0.228 ± 0.013. Based on Equation (5), the basic reproductive number ℛ0 is 
2.28 ± 0.13. This value is relatively close to the estimated value by the World Health Organization 
(WHO), which ranges from 2 to 2.5 for COVID-19 [40]. In addition, this value is not so different from 
recent estimations: 2.24–3.58 [41], 2.0–3.1 [42], and 2.06–2.52 [43] for COVID-19. However, some 
studies reported higher ℛ0 values of 3.28, 2.90, and 3.11, as reported in [44–46], respectively. This bias 
in estimating the ℛ0 value is probably attributed to limited available data over a short period and 
also highly depends on the settings. Furthermore, the estimation of ℛ0 strongly relies on the 
estimation method and the validity of the assumptions for some coefficients. Thus, the availability of 
more data over a long period would provide a more accurate estimation and form a clearer trend. 

Secondly, the SEIR model incorporating the mortality in the population due to COVID-19 was 
used to predict the epidemic peak of COVID-19 in this study. The epidemic peak in Malaysia could 
be reached late July 2020 and the uncertainty range is from 12 July to 11 August 2020. The results also 
indicated that the COVID-19 trend in Malaysia will not flatten too quickly. This indication might be 
consistent with the WHO’s statement [47] that COVID-19 is not a seasonal virus and thus will not 
disappear in the summer, such as the flu. It should be noticed that the epidemic estimation may be 
subjected to some variability, such that possible big change in social and natural situations would 
shorten the range of the peak estimation. Besides, the epidemic estimation relies on the mathematical 
modeling used to describe the epidemic. A complex model with more biological and epidemiological 
variables is more realistic. However, it requires more model parameters and coefficients to be 
estimated compared to a simpler one. Therefore, it is important to keep a balance between biological 
realism and eliminating the variability in the model prediction with a view to increase the reliability 
of the predictions. 

The findings obtained for epidemic peak prediction are as follows: (1) the epidemic size is not 
affected by the identification rate, which ranges from 0.01 to 0.084 for the total population in Malaysia; 
(2) a near-future intervention has a great effect to postpone the epidemic peak that would give the 
government and healthcare providers more time to optimize the medical environment by training 
more staffs to deal with COVID-19; and (3) a longer period intervention should be taken into account 
to reduce the epidemic size. Although the Malaysian government has implemented the Movement 
Control Order (MCO) towards COVID-19 on 18 March throughout the country, the number of daily 
confirmed cases is still rising with an average of 170 cases for the last two weeks. Besides, more critical 
cases requiring intensive care units are being recorded. This trend is due to the following possible 
reasons: 

1. The number of people who had contact with COVID-19 patients is enormous, as 
reported in [48]. This could make the process of tracking and isolating more complex. 
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Based on the information reported by Chinese medical doctors involved in Wuhan, 
the critical cases form 10% of the total number of infected people. The early diagnosis 
and treatment would reduce the flow of COVID-19 patients into the ICU unit [49]. 

2. Poor experience in treating and managing cases with different levels of infection. For 
instance, severe cases should be kept under monitoring with intensive care, while 
mild cases without clear symptoms should be kept with less intensive care in the 
hospitals. However, patients under investigation should be placed in special 
isolation outside the hospitals. This kind of management would ease the treating 
process with the currently available equipment [50]. 

3. The current MCO implemented in Malaysia is limited to aiding the awareness of the 
people to the danger of COVID-19. For the first 10 days of the MCO, 60% of the public 
has obeyed the MCO issued by the government [51]. Thus, more restrictions are 
needed to enforce the MCO. By increasing the public awareness, the infection rate 
will be reduced, which would result in decreasing the reproductive number and 
delaying the epidemic peak. 

Lastly, this study provides short-term forecasting for the number of infected cases based on the 
ANFIS model. The results indicate a high forecast precision is achieved based on the ANFIS model. 
The ANFIS model achieved 1) an excellent coefficient of determination (R2 = 0.9964), which is very 
close to the perfect value of 1; 2) a low NRMSE value (NRMSE = 0.041), which is highly close to the 
perfect values of 0; and 3) a high MAPE value (MAPE = 2.45%), which is less than 10% [52]. The main 
motivation behind using the ANFIS model instead of parametric models (e.g., likelihood and 
Bayesian methods) is that ANFIS is able to achieve a high accuracy using only a few datasets and is 
easy to be deployed, such that the ANFIS model uses one input as day number, while parametric 
models require at least four inputs as well as estimation of the coefficients. 

This study has some limitations. First, the SEIR model is used with a limited number of cases 
and COVID-19 is highly infectious; so, the current results of peak estimation are constrained to a 
limited period and may be changed after inputting a considerable number of infected cases. Secondly, 
the estimation is based on the available data from the WHO. A possible delay in confirming or 
reporting could result in an underestimation of ℛ0. Lastly, the ANFIS model is applicable for short-
term forecasting, and so it cannot be used to predict the epidemic peak of COVID-19 as the ANFIS 
model does not consider the recovered and death rates. 

5. Conclusions 

As the main public concern in Malaysia is whether the COVID-19 spread will continue for the 
upcoming few months, we provide here information on predicting the epidemic peak using the SEIR 
model, estimating the infection rate using the GA algorithm, and short-time forecasting using the 
ANFIS model. The results related to the epidemic peak show that (1) the epidemic peak could be 
reached in the period ranging from 12 July to 11 August 2020, and last until the period ranging from 
22 November 2020 to 12 January 2021; (2) the identification rate, which ranges from 0.01 to 0.084, does 
not affect the epidemic size for the total Malaysian population; (3) the influence of the identification 
rate on the basic reproductive number is negligible; and (4) a near-future intervention may decrease 
the infection rate, which would lead to a delay the epidemic peak. The results also show that the 
infection rate is 0.228 ± 0.013, while the basic reproductive number is 2.28 ± 0.13. Furthermore, a high 
forecasting accuracy is achieved, such that the NRMSE, MAPE, and R2 values are 0.041, 2.45%, and 
0.9964, respectively. 
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