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Abstract: Epidemiological models play a vital role in understanding the spread and severity of a
pandemic of infectious disease, such as the COVID-19 global pandemic. The mathematical modeling
of infectious diseases in the form of compartmental models are often employed in studying the
probable outbreak growth. Such models heavily rely on a good estimation of the epidemiological
parameters for simulating the outbreak trajectory. In this paper, the parameter estimation is for-
mulated as an optimization problem and a metaheuristic algorithm is applied, namely Harmony
Search (HS), in order to obtain the optimized epidemiological parameters. The application of HS in
epidemiological modeling is demonstrated by implementing ten variants of HS algorithm on five
COVID-19 data sets that were calibrated with the prototypical Susceptible-Infectious-Removed (SIR)
compartmental model. Computational experiments indicated the ability of HS to be successfully
applied to epidemiological modeling and as an efficacious estimator for the model parameters.
In essence, HS is proposed as a potential alternative estimation tool for parameters of interest in
compartmental epidemiological models.

Keywords: epidemiological modeling; epidemiological parameters; SIR model; harmony search

1. Introduction

Epidemiological models play a vital role in understanding the spread and severity of
a pandemic (or epidemic) of infectious diseases [1]. During an outbreak of an infectious
disease, it is crucial to simulate the potential outbreak growth for planning the outbreak
control measures in order to provide useful insights into measurable outcome of existing
interventions, predictions of subsequent growth, risk estimations, and guiding alternative
interventions [2–4]. Epidemiological constraints, such as delays in symptom appearance
(due to incubation period) and positive test confirmation (due to limited testing and de-
tection resources), may limit the real-time use of epidemiological models [5,6]. In order to
overcome such constraints, mathematical modeling of infectious diseases was employed in
epidemiology, as recognized by WHO [7] and proven to be effective [8,9]. Compartmental
modeling as a class of mathematical modeling was widely applied to infectious diseases
modeling [10]. The Susceptible-Infectious-Removed (SIR) model is the first compartmental
modeling approach for simulating the probable outbreak trajectory [11]. Besides the stan-
dard model, various extensions of SIR were developed in the recent past, mostly by includ-
ing additional compartments, such as the Susceptible-Exposed-Infectious-Removed (SEIR)
model. During the current COVID-19 global pandemic crisis, many studies (e.g., [12–18])
applied the SIR model and its extensions to analyze the dynamics of the disease. A recent
review on SIR family of models used for studying, predicting, and managing COVID-19 is
presented in [19].
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1.1. The Susceptible-Infectious-Removed (SIR) Model

Despite the development of various extensions of the SIR model, the standard SIR
model remains the preferred first approach for analyzing the spreading of an infectious
disease (especially in the beginning or first phase) and it is reasonably predictive [11].
The SIR model splits a given population N into three compartments (non-intersecting
classes) at any given time t (measured in days) namely, (i) susceptible (not yet infectious and
disease free individuals at t) denoted St, (ii) infectious (confirmed or isolated individuals)
denoted It, and (iii) removed (no longer infectious or dead) denoted Rt. The number of
individuals in each compartment vary over time. In general, the dynamics is described
with a large number of susceptible individuals at the beginning, since the entire population
that is not infected is considered to be susceptible, while infectious individuals remain low
at the beginning of a pandemic. At subsequent times, the number of infectious individuals
will increase, the number of removed individuals will begin to gradually increase, and the
number of susceptible individuals will decrease. Finally, towards the end of a pandemic,
the number of removed individuals will increase, the number of infectious individuals
will decrease gradually, while the number of susceptible individuals will remain the
lowest. The disease dynamics according to SIR model can be visualized, as in Figure 1.
The variation rate over time in each compartment is modeled using a system of non-linear
ordinary differential equations (ODEs),

dS
dt

= − βSI
N

,
dI
dt

=
βSI
N
− γI,

dR
dt

= γI. (1)

Figure 1. Infectious disease dynamics according to SIR model. Adapted from [11].

The primary assumption of SIR model is that the population is closed and fixed,
and it is the sum of individuals in all of t compartments i.e., N = S + I + R for all t.
The epidemiological parameters of interest are, i) the transmission rate β and ii) the recovery
rate γ. Accordingly, the average transmission (from an infectious individual to a susceptible
individual) period is 1/β days and the average infectious period is 1/γ days. Estimation of
the SIR parameters is a critical task, since there is no closed-form analytical solution to the
SIR model. Numerical approximation methods, such the Runge–Kutta methods, are often
employed in order to solve the SIR model with estimated parameters. Thus, the quality of
the simulation heavily relies on the estimates of the epidemiological parameters. Apart
from that, a good estimate of the parameters is crucial in assessing the transmissibility of
an infectious diseases in real-time through the effective reproduction number Rt. One
of the approaches for inferring Rt is by using compartmental epidemiological models,
in which Rt is treated at the deflation of the basic reproduction number R0 [20], which
can be estimated using the relationship among the epidemiological parameters [21] that is
given by:

R0 ≈
β

γ
. (2)
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1.2. Determining the SIR Parameters

The surging interest in infectious diseases modeling due to the COVID-19 pandemic
has led to a different approach of compartmental modeling from the usual mathematical
modeling strategy to statistical modeling strategy [22]. In the latter strategy, the model
parameters are estimated instead of being specified by or adapted from certain subjec-
tive prior information as in the former strategy (usually from previous studies, previous
pandemic or values estimated by WHO). The estimation of the SIR model parameters
is essentially an optimization problem attempting to find a model that best fits the data.
The estimated parameters are then used along with any numerical approximation methods
to obtain the simulated SIR compartments’ trajectories. A least squares loss function in
terms of the simulated and observed trajectories, such as the Sum of Squared Error (SSE), is
usually applied to quantify the discrepancy that arises from the simulation. Hence, the ob-
jective of the optimization is to minimize the loss function by estimating the parameters
that lead to the best fit curve through any standard optimization techniques.

Bayesian approach is becoming the popular optimization and estimation tool, as ev-
idenced by the studies concerning COVID-19 pandemic. This approach is commonly
employed by calibrating the available data while using Markov Chain Monte Carlo
(MCMC) method with Metropolis–Hastings (MH) algorithm sampling as implemented
in [6,12–14,18,23] to obtain posterior estimates and credible intervals of the epidemiological
parameters. Although the estimation of the model parameters is an obvious optimization
problem, the metaheuristics family of optimization techniques received very little attention
in epidemiological modeling. The first metaheuristic algorithm used in estimating the pa-
rameters in ODEs in general, and infectious diseases specifically, is the Genetic Algorithm
(GA) (e.g., [24–26]). Recently, the Particle Swarm Optimization (PSO) algorithm is imple-
mented in order to estimate the parameters in ODEs governing the SIR model variants,
as presented in [27]. As for COVID-19 pandemic, very few studies applied metaheuristic
algorithms for estimating the epidemiological model parameters, such as GA in [28], PSO
in [29,30], Stochastic Fractal Search in [31], Marine Predators Algorithm in [32], and Flower
Pollination Algorithm with Salp Swarm Algorithm in [33]. In this regard, we are interested
in applying a metaheuristic algorithm, namely the Harmony Search and its variants, to the
optimization problem of estimating the SIR model parameters.

This paper is organized, as follows. Section 2 details the Harmony Search algorithms
that were used in this study. Section 3 presents the experimental setup of estimating
the epidemiological parameters of SIR model while using Harmony Search algorithms.
Section 4 provides the simulation results with detailed discussions. Finally, Section 5
provides the conclusion and possible future works of this study.

2. Harmony Search Algorithm and Selected Variants

The Harmony Search (HS) algorithm [34] is a well-known population-based meta-
heuristic algorithm. The optimization process in HS is a mimicry of the underpinning
principles of jazz music orchestra, where musicians attain a pleasant harmony through sev-
eral improvisation steps. HS has been successfully applied to a wide variety of real-world
optimization problems, such as system reliability, robot path planning, renewable energy
systems, hyper-parameter tuning of deep neural networks, intelligent manufacturing, and
credit scoring (see [35,36]); university timetabling, structural design, water distribution,
and supply chain management (see [37,38]); and, music composition, Sudoku puzzle solv-
ing, tour planning, web page clustering, vehicle routing, dam scheduling, groundwater
modeling, soil stability analysis, ecological conservation, heat exchanger design, trans-
portation energy modeling, satellite heat pipe design, medical physics, medical imaging,
RNA structure prediction, and image segmentation (see [39], among others). Besides that,
the implementation of HS in various parameter estimation studies indicated the potentiality
of HS as an effective parameter estimation tool. Some of the notable parameter estimation
problems that applied HS include parameter estimation of the nonlinear Muskingum
model [40,41], parameter estimation in vapor-liquid equilibrium modeling [42], parameter
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estimation in an electrochemical lithium-ion battery model [43], parameter identification of
synthetic gene networks [44], and design storm estimation from probability distribution
models [45]. In addition, HS was also successfully employed in human activity pattern
modeling, such as disease spread and disaster response [46]. Hereinafter, the term HS
represents the family of HS variants, while the standard HS is denoted SHS. The five
primary steps in SHS, as outlined in [47], are as follows:

1. Initialization of HS parameters and the objective function. The control parame-
ters are Harmony Memory Size HMS, Harmony Memory Considering Rate HMCR,
Pitch-Adjusting Rate PAR, bandwidth (now known as fret width) BW, and maximum
improvisations MaxImp. If f (·) is the objective function with n decision variables
x = (x1, ..., xn) in the range (LBi, UBi), then the continuous optimization problem can
be formulated as follows:

minimize f (x) s.t xi ∈ (LBi, UBi). (3)

2. Initialization of Harmony Memory (HM). HM is a HMS× n dimensional matrix that
consists of randomly generated harmonies (candidate solutions) from the uniform
distribution U(0, 1) within the ranges of the decision variables. In general, it is
more convenient to represent HM as an augmented matrix of order HMS× (n + 1),
as follows:

HM =

 x1
1 · · · x1

n f (x1)
...

. . . · · · |
...

xHMS
1 · · · xHMS

n f (xHMS)

, (4)

where each row of the HM represents the solution vector xj, (j = 1, 2, ..., HMS) in the
first n−columns, followed by the fitness that is generated from the solution vector,
f (xj). It is also common to have HM as a sorted matrix in the ascending order of the
fitness value (the last column of HM).

3. Improvisation. Improvisation is performed to generate a new harmony by exploring
and exploiting the search space. Thus, a new harmony is randomly selected from the
HM with a probability of HMCR or it is randomly generated outside of HM with
probability 1− HMCR. If a new harmony is obtained from HM, then the harmony
may be improvised by adjusting the harmony with neighborhood values that are based
on BW with probability of PAR or remain as is with probability 1− PAR. Note that
HMCR is inversely proportional to the explorative power of different search spaces,
while PAR is directly proportional to the exploitation power of local search space.

4. Update HM. New harmony from Step 3 is evaluated with the objective function to
obtain the new fitness. If the new fitness is lower than the worst fitness, then the worst
solution in HM will be replaced with the new harmony.

5. Termination. Repeat Steps 3 and 4 until MaxImp has been reached or other termination
criteria are satisfied.

The complete details of SHS are provided as in Algorithm 1. SHS is designed with
fewer mathematical operations and it is relatively easy to code, but easily applicable to
a wide variety of optimization problems. The advantages of HS are discussed in [37].
Over the two decades since the inception of HS, many HS variants have been developed to
date. A majority of the variants modifies the improvisation procedures either by internal
modification or hybridization with other heuristics. Some of the recent comprehensive
reviews on HS variants are presented in [37,39,47–49]. In this study, only the internally
modified HS variants were considered and selected on a minimal parameter setting re-
quirement basis.
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Algorithm 1: Standard Harmony Search

1: Set HMS, HMCR, PAR, BW, and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS % generate HM
3: Compute f (xj), ∀j = 1, 2, ..., HMS % compute fitness
4: while (t ≤ MaxImp) or (any stopping criterion) do
5: for each i ∈ [1, n] do
6: if U(0, 1) ≤ HMCR then
7: x′i = xj

i where j ∼ U(1, HMS) % memory consideration
8: if U(0, 1) ≤ PAR then
9: x′i = x′i + (2×U(0, 1)− 1)× BW % pitch adjustment
10: end if
11: else
12: x′i = LBi + U(0, 1)× (UBi − LBi) % random generation
13: end if
14: end for
15: if f (x′) < f (xworst) then
16: replace xworst in HM with x′
17: end if
18: end while

2.1. Improved Harmony Search (IHS)

The Improved Harmony Search (IHS) [50] is the prototypical HS variant. While
still requiring to fine-tune the HMCR parameter, the parameters PAR and BW are made
dynamic in this variant with the introduction of the PARmax (BWmax) and PARmin
(BWmin) iterative parameters. Although IHS has shown better performance than SHS, this
variant increased the burdensome process of setting suitable values for four parameters
instead of just two in SHS [51]. Nevertheless, IHS is considered to be a breakthrough
that paved the way for the development of various HS variants to date. PAR and BW are
adjusted at each iteration while using:

PARt = PARmin +
PARmax− PARmin

MaxImp
× t, (5)

BWt = BWmax× (
BWmin
BWmax

)
t

MaxImp . (6)

The computational procedure of IHS is provided, as in Algorithm 2.

Algorithm 2: Improved Harmony Search

1: Set HMS, HMCR, PAR using (5), BW using (6), and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if U(0, 1) ≤ HMCR then
7: x′i = xj

i where j ∼ U(1, HMS)
8: if U(0, 1) ≤ PARt then
9: x′i = x′i + (2×U(0, 1)− 1)× BWt
10: end if
11: else
12: x′i = LBi + U(0, 1)× (UBi − LBi)
13: end if
14: end for
15: if f (x′) < f (xworst) then
16: replace xworst in HM with x′
17: end if
18: end while

A year later, a new variant that was inspired by the swarm intelligence concept of the
PSO was introduced by the principal developer of IHS. This variant is known as Global
Harmony Search (GHS) [52] and aims to mimic the best harmony in the HM. The parameter
PAR is adapted from IHS, while BW is removed. Thus, the pitch adjustment step in SHS is
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replaced with a random selection of best harmony of any decision variable from the HM,
as follows:

x′i = xbest
k , i ∈ [1, n], k ∼ U(1, n). (7)

In general, GHS is claimed to perform better than SHS and IHS, especially in high-
dimensional optimization problems. However, [53] asserted that GHS has flaws that will
cause premature convergence and the name of this variant is also said to be misleading.
The most serious flaw, as noted by [51], is the frequent generation of infeasible new
harmonies, whenever the upper and lower bounds of each decision variable are not
identical in the given optimization problem. Hence, GHS is not considered in this paper.

2.2. Novel Global Harmony Search (NGHS)

The Novel Global Harmony Search (NGHS) [54] adapts the swarm intelligence concept
of the PSO algorithm in the improvisation step of the SHS. This approach enables the
new harmony to mimic the global-best harmony in the HM. Thus, the HMCR and PAR
parameters are removed and the improvisation is only dependent on the best and worst
harmonies in HM. The random generation of harmony is, in fact, analogous to SHS, and the
only difference is that, instead of randomly selecting a harmony with the probability of
1− HMCR, NGHS performs genetic mutation with the probability of Pm, based on the
ideas from evolutionary algorithms. NGHS is presented, as in Algorithm 3.

Algorithm 3: Novel Global Harmony Search

1: Set HMS, Pm, and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: xR = 2× xbest

i − xworst
i

7: x′i = min(max(x′i , LBi), UBi)
8: x′i = xworst

i + U(0, 1)× (xR − xworst
i ) % position updating

9: if (U(0, 1) ≤ Pm) then % genetic mutation
10: x′i = LBi + U(0, 1)× (UBi − LBi)
11: end if
12: end for
13: if f (x′) < f (xworst) then
14: replace xworst in HM with x′
15: end if
16: end while

2.3. Self-Adaptive Global Best Harmony Search (SGHS)

The Self-Adaptive Global Best Harmony Search (SGHS) [55] aims to improve the
GHS [52] in terms of avoiding getting trapped at local optima. In this approach, HMCR
and PAR are dynamically adjusted to a suitable range after a number of iterations by
tracking their previous values that allowed for the replacement of new harmony in
HM. Further, HMCR and PAR are assumed to be normally distributed where HMCR ∼
N(HMCRm, 0.01), HMCR ∈ [0.9, 1.0] and PAR ∼ N(PARm, 0.05), PAR ∈ [0.0, 1.0]. The ini-
tial values of HMCRm and PARm are set at 0.98 and 0.9, respectively. Subsequently, SGHS
begins with HMCR and PAR values being generated from the Normal distribution. Dur-
ing each iteration, the values of HMCR and PAR that corresponds to a replacement of
new harmony in HM is recorded until a number of solutions are generated within the
specified learning period LP. Once LP is reached, the recorded HMCR and PAR values in
previous iterations are averaged to obtain new HMCRm and PARm to be used in upcoming
iterations. This process is repeated until the termination criterion is satisfied. As for BW,
the values are dynamically adapted, as follows:

BWt =

{
BWmax− BWmax−BWmin

MaxImp t < MaxImp
2

BWmin t ≥ MaxImp
2

. (8)

SGHS is outlined, as in Algorithm 4.
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Algorithm 4: Self-Adaptive Global Best Harmony Search

1: Set HMS, HMCRm, PARm, BW using (8), LP, and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: Initialize solution counter lp = 1
5: Generate HMCR and PAR based on HMCRm and PARm
6: while (t ≤ MaxImp) do
7: for each i ∈ [1, n] do
8: if U(0, 1) ≤ HMCR then
9: x′i = xj

i ±U(0, 1)× BWt where j ∼ U(1, HMS)
10: if U(0, 1) ≤ PAR then
11: x′i = xbest

i
12: end if
13: else
14: x′i = LBi + U(0, 1)× (UBi − LBi)
15: end if
16: end for
17: if f (x′) < f (xworst) then
18: replace xworst in HM with x′
19: record the values of HMCR and PAR
20: end if
21: if lp = LP then
22: recompute HMCRm and PARm by averaging the recorded values of
HCMR and PAR
23: reset lp = 1
24: else
25: lp = lp + 1
26: end if
27: end while

2.4. Intelligent Tuned Harmony Search (ITHS)

Based on the idea of sub-population approach for optimization (such as [56]) and
decision-making theory, the Intelligent Tuned Harmony Search (ITHS) [57] attempts to
intelligently control the exploration and exploitation in HS based on consciousness or
previous experience. This approach begins by assigning the xbest as the leader of the whole
population. The leader divides the HM into two groups (sub-populations), say Group I
and Group II, in order to achieve a good balance between exploration and exploitation.
Group I consists of the harmonies with fitness less than or equal to average fitness and
Group II vice-versa. In that sense, Group I will undergo both exploration and exploitation
stages, while Group II will only undergo exploration stage. ITHS uses the same adaptation
of dynamic PAR as the Self-Adaptive Harmony Search (SAHS) [53] that is given by:

PARt = PARmax− (PARmax− PARmin)× t
MaxImp

. (9)

Algorithm 5 presents the computational steps of ITHS.

2.5. Novel Self-Adaptive Harmony Search (NSHS)

The Novel Self-Adaptive Harmony Search (NSHS) is a HS variant that was developed
by [51], being inspired by the defects that the creator found in SHS and other variants,
namely IHS [50], GHS [52], SAHS [53], Dynamic Local Harmony Search (DLHS) [56], and
SGHS [55]. In NSHS, the HMCR parameter is constructed based on the dimension of the
optimization problem to be solved,

HMCR = 1− 1
n + 1

. (10)

With reference to Equation (10), HMCR is set to be directly proportional to n, in order
to use the HM more frequently, and it lies in the interval (0.5, 1). The parameter PAR
is removed. Furthermore, a dynamic fine-tuned BW is introduced and it depends on
the standard deviation S of the objective function, f std = S( f (xj)), ∀j = 1, 2, ..., HMS.
BW diminishes in stages according to the iteration number t, while increasing with a
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larger range of decision variables. The improvisation step in NSHS generates a new
harmony within the narrow range of [xworst

i , xbest
i ] based on conditions of HMCR and f std.

Algorithm 6 outlines the computational procedure of NSHS.

Algorithm 5: Intelligent Tuned Harmony Search

1: Set HMS, HMCR, PAR using (9), and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if U(0, 1) ≤ HMCR then
7: x′i = xj

i where j ∼ U(1, HMS)
8: if U(0, 1) ≤ PARt then
9: f mean = mean( f (xj))
10: if ( f (x′i) ≤ f mean) then %Group 1
11: if (U(0, 1) ≤ 0.5) then
12: x′i = xbest

i − (xbest
i − x′i)×U(0, 1)

13: else %Group 2
14: x′i = xbest

i + (xworst
i − x′i)×U(0, 1)

15: end if
16: else
17: m = integer(1 + (n− 1))×U(0, 1)
18: xbest

m = xbest
m × UBi

UBm
19: x′i = x′i + (xbest

m − x′i)×U(0, 1)
20: end if
21: x′i = min(max(x′i , LBi), UBi)
22: end if
23: else
24: x′i = LBi + U(0, 1)× (UBi − LBi)
25: end if
26: end for
27: if f (x′) < f (xworst) then
28: replace xworst in HM with x′
29: end if
30: end while

Algorithm 6: Novel Self-Adaptive Harmony Search

1: Set HMS, HMCR using (10), and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS and corresponding f std
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if U(0, 1) ≤ HMCR then
7: x′i = xj

i where j ∼ U(1, HMS)
8: else
9: if ( f std > 0.0001) then
10: x′i = LBi + U(0, 1)× (UBi − LBi)
11: else
12: x′i = xbest

i + U(0, 1)× (xworst
i − xbest

i )
13: end if
14: end if
15: if ( f std > 0.0001) then
16: x′i = x′i + (UBi − LBi)/100× (1− t/MaxImp)×U(−1, 1)
17: else
18: x′i = x′i + 0.0001×U(−1, 1)
19: end if
20: end for
21: if f (x′) < f (xworst) then
22: replace xworst in HM with x′
23: end if
24: end while

2.6. Global Dynamic Harmony Search (GDHS)

Based on IHS [50], the Global Dynamic Harmony Search (GDHS) [58] further improves
the improvisation step of HS with dynamic parameters, as well as dynamic upper and
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lower bounds of the decision variables. The iterative values of HMCR and PAR are made
to be both decreasing and increasing in the search of global optima, as given by:

HMCRt = 0.9 + 0.2×
√
(

t− 1
MaxImp− 1

)× (1− t− 1
MaxImp− 1

), (11)

PARt = 0.85 + 0.3×
√
(

t− 1
MaxImp− 1

)× (1− t− 1
MaxImp− 1

). (12)

For BW, the dynamic adjustment is adapted from IHS, but with a few modifications,
as follows:

BWden = 20× |1 + log10(UBi − LBi)|, BWmax =
UBi − LBi

BWden
, BWmin = 0.001× BWmax, (13)

and, based on Equation (6) from IHS, the equation reduces to,

BWt = (0.001)
t

MaxImp . (14)

Next, a correction coefficient, coe f , is introduced at each iteration by:

coe ft = (1 + (HMS− j))× (1− t− 1
MaxImp− 1

), (15)

where j is the index of the selected harmony in the memory consideration step.
Finally, the dynamic lower and upper bounds are obtained for the random selection

step. Algorithm 7 provides the computational steps of GDHS.

Algorithm 7: Global Dynamic Harmony Search

1: Set HMS, HMCR using (11), PAR using (12), BW using (14), and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if U(0, 1) ≤ HMCRt

7: x′i = xj
i where j ∼ U(1, HMS)

8: if U(0, 1) ≤ PARt
9: compute coe ft using (15)
10: x′i = x′i ± BWt × coe ft
11: if (x′i > UBi or x′i < LBi)
12: x′i = x′i ∓ BWt × coe ft
13: end if
14: end if
15: else
16: UBHM

i = xworst
i and LBHM

i = xbest
i

17: UB′i = UBHM
i + BWmax and LB′i = LBHM

i − BWmax
18: x′i = LB′i + U(0, 1)× (UB′i − LB′i)
19: end if
20: end for
21: if f (x′) < f (xworst) then
22: replace xworst in HM with x′
23: end if
24: end while

2.7. Parameter Adaptive Harmony Search (PAHS)

The Parameter Adaptive Harmony Search (PAHS) [59] focused on the modification of
the improvisation step of IHS [50]. The dynamic values of HMCR, PAR, and BW are gen-
erated during each iteration to ensure the global optima is achieved. The authors explored
four different combinations of dynamic HMCR and PAR iterative values i.e., (i) linear
HMCR and PAR; (ii) exponential HMCR and linear PAR; (iii) linear HMCR and expo-
nential PAR; and, (iv) exponential HMCR and PAR. Through computational experiments,
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it was concluded that linear HMCR and exponential PAR yields the best performance.
In this way, HMCR gradually increases, while PAR exponentially decreases with respect
to the iterations. HMCR and PAR at each iteration are computed using:

HMCRt = HMCRmin + (HMCRmax− HMCRmin)× t
MaxImp

, (16)

PARt = PARmax× (
PARmin
PARmax

)
t

MaxImp , (17)

whereas, BW is adapted from IHS as it is. PAHS further aggravates the difficulty of finding
suitable values as there are six parameters to be set now, rather than only four in IHS. PAHS
is detailed in Algorithm 8.

Algorithm 8: Parameter Adaptive Harmony Search

1: Set HMS, HMCR using (16), PAR using (17), BW using (6), and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if U(0, 1) ≤ HMCRt then
7: x′i = xj

i where j ∼ U(1, HMS)
8: if U(0, 1) ≤ PARt then
9: x′i = x′i + (2×U(0, 1)− 1)× BWt
10: end if
11: else
12: x′i = LBi + U(0, 1)× (UBi − LBi)
13: end if
14: end for
15: if f (x′) < f (xworst) then
16: replace xworst in HM with x′
17: end if
18: end while

2.8. Enhanced Self-Adaptive Global Best Harmony Search (ESHS)

The Enhanced Self-Adaptive Global Best Harmony Search (ESHS) [60] is one of the
recent HS variants that retains the simplicity and distinctive framework of SHS. In order to
eliminate the troublesome parameter fine-tuning process in SHS, a new parameter setting-
free strategy is proposed without requiring any extra statistic and external archive. HMCR
is dynamically obtained at each iteration as a random normal number,

HMCRt = N(
n

1 + n
,

1
1 + n

), (18)

while PAR is given by:

PARt = 1− t− 1
MaxImp

, (19)

and BW is defined by:

BWt =

{
|xh

i − x′i | xh
i 6= x′i , h ∼ U(1, HMS)

(UBi − LBi)× e(LBi−UBi)
t

MaxImp otherwise
. (20)

ESHS employs the Gaussian mutation technique in contrary to the uniform random-
ization in SHS. Gaussian mutation is claimed to be more efficient in exploring the global
optimum solution as compared to uniform randomization. Thus, the random selection in
ESHS is performed while using:

x′i = N(µi, σ), µi = xbest
i , σ = 1− (

t− 1
MaxImp

)2, (21)
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with the probability of 1− HMCR. ESHS is detailed in Algorithm 9.

Algorithm 9: Enhanced Self-Adaptive Global Best Harmony Search

1: Set HMS, HMCR using (18), PAR using (19), BW using (20), and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while(t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if U(0, 1) < HMCRt then
7: x′i = xj

i where j ∼ U(1, HMS)
8: if U(0, 1) < PARt then
9: x′i = x′i + U(−1, 1)× BWt
10: end if
11: else
12: perform Gaussian mutation using (21)
13: end if
14: if (x′i > UBi or x′i < LBi) then
15: x′i = LBi + U(0, 1)× (UBi − LBi)
16: end if
17: end for
18: if f (x′) < f (xworst) then
19: replace xworst in HM with x′
20: end if
21: end while

2.9. Improved Binary Global Harmony Search (IBGHS)

The Improved Binary Global Harmony Search (IBGHS) [61] is a binary variant of the
NGHS [54] that aims to improve the two limitations of NGHS namely the local optima
trap and slow convergence. The improvisation step is modified with the introduction of a
control parameter Pc in the place of HMCR and a linear combination of the best and worst
harmonies in order to improve the global search ability and convergence speed of NGHS.
Algorithm 10 provides the computational procedure of IBGHS.

Algorithm 10: Improved Binary Global Harmony Search

1: Set HMS, Pc, Pm, PAR, BW, and MaxImp
2: xj

i = LBi + U(0, 1)× (UBi − LBi), ∀i = 1, 2, ..., n and ∀j = 1, 2, ..., HMS
3: Compute f (xj), ∀j = 1, 2, ..., HMS
4: while (t ≤ MaxImp) do
5: for each i ∈ [1, n] do
6: if (U(0, 1) ≤ Pc) then %control
7: xR = 2× xbest

i − xworst
i

8: x′i = min(max(x′i , LBi), UBi)
9: x′i = xworst

i + U(0, 1)× (xR − xworst
i ) %position updating

10: if (U(0, 1) ≤ Pm) then %genetic mutation
11: x′i = LBi + U(0, 1)× (UBi − LBi)
12: else
13: x′i = 0.7xbest

i + 0.3xworst
i

14: if (U(0, 1) ≤ PAR) then
15: x′i = x′i + U(0, 1)× BW
16: x′i = min(max(x′i , LBi), UBi)
17: end if
18: end if
19: end for
20: if f (x′) < f (xworst) then
21: replace xworst in HM with x′
22: end if
23: end while

Despite being successfully applied in various fields, to the best of our knowledge, HS
algorithms have yet to be applied in epidemiology, particularly in epidemiological model-
ing. Thus, in this study, ten variants of HS algorithm is proposed to be applied in order
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to estimate the epidemiological parameters of interest in the prototypical compartmental
epidemiological SIR model and compare the estimation performance of each algorithm.

3. Estimating the Epidemiological Parameters of SIR Model

HS algorithms are applied to the SIR parameter estimation problem while using
the cumulative infectious cases (total cases) of the COVID-19 pandemic as the use-case.
The optimized (final) values of parameters β and γ are estimated by calibrating the available
COVID-19 data and the SIR model with the generated harmonies (candidate solutions)
from HM.

3.1. COVID-19 Data Sets

The authors obtain the time series of cumulative infectious cases per day for five countries,
namely the United States of America (USA), France (FR), South Korea (SK), Ireland (IR), and
Singapore (SG), by web scraping the figures in https://www.worldometers.info/coronavirus
(which gathers data from various reliable sources including European Centre for Disease
Prevention & Control and Johns Hopkins University & Medicine Coronavirus Resource
Center). The data collected are for a period of 240 days, beginning from the first day of the
outbreak in each country. Next, the first 220 days data is used for calibration to obtain the
estimates of the parameters. The remaining 20 days of data are used for validation against the
projection of simulation produced while using the HS optimized parameter values.

3.2. SIR Model Setup

The SIR compartments are initialized (at time t = 0) with initial conditions I0 and R0,
according to the actual number of infectious and removed cases, respectively, on the first
day of the outbreak in each country. Meanwhile, S0 is set as the remaining individuals in
the population N who are yet to be infected and removed, i.e., S0 = N − I0 − R0. Table 1
provides the modeling initialization.

Table 1. Susceptible-Infectious-Removed (SIR) modeling initialization.

Data Set Calibration Period Projection Period I0 R0 N *(Country) (220 Days) (20 Days)

USA 21 January 2020–27 August 2020 28 August 2020–16 September 2020 1 0 331,002,651
FR 25 January 2020–31 August 2020 1 September 2020–20 September 2020 3 0 65,273,511
SK 20 January 2020–26 August 2020 27 August 2020–15 September 2020 1 0 51,269,185
IR 29 February 2020–5 October 2020 6 October 2020–25 October 2020 1 0 4,937,786
SG 24 January 2020–30 August 2020 31 August 2020–19 September 2020 3 0 5,850,342

* estimated at mid year according to UN data.

3.3. SIR Parameters Estimation as Optimization Problem

The estimation of SIR parameters is formulated as an optimization problem with
decision variables x = {x1, x2}, where β = x1 and γ = x2. The upper and lower bounds of
the decision variables are set according to the complete possible ranges of β and γ, which
are essentially the epidemiological dynamics’ rates and, hence, they share the same bounds,
i.e., β, γ ∈ (0, 1). The objective function is formulated, as follows:

1. Let CT = ∑t=T
t=0 It be the observed cumulative infectious cases on day t = T, (t, T ∈

[0, 219]), where It is the observed infectious cases on day t.
2. Let ĈT = ∑t=T

t=0 Ît be the simulated cumulative infectious cases (rounded to the
corresponding integers) on day t = T, (t, T ∈ [0, 219]), where Ît is the SIR model
simulated infectious cases on (rounded to the corresponding integers) day t while
using x ∈ HM.

3. Subsequently, an objective function f (·) that minimizes the SSE between CT and ĈT
can be formulated as:

minimize f (x) =
T=219

∑
T=0

(CT − ĈT)
2 s.t x ∈ (0, 1). (22)

https://www.worldometers.info/coronavirus
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A set of ten independent runs is performed for each HS algorithm while using each of
the data sets. The optimization steps are detailed, as follows:

1. The common control parameters shared among all ten algorithms are set to be identi-
cal, HMS = 30 and MaxImp = 50, 000, following the recommendation in [47].

2. Ten initial HMs (HM1, HM2, . . . , HM10) and ten corresponding initial fitness vectors
( f1, f2, . . . , f10) are generated to be used in each run according to the initialization of
HM (Step 2) in Section 2.

3. Optimization is performed for ten independent runs for each data set while using
the identical HM and f using each of the algorithms (Algorithm 1 to Algorithm 10),
as described in Section 2. For instance, the first run for the USA data set will be
performed while using the same HM1 and f1 for all ten HS algorithms. The specific
control parameters that are shared among some algorithms are also set to be identical
as displayed in Table 2.

4. Repeat Step 3 until the runs are completed for all five data sets. The combination
of parameters’ values that yields the best fitness (lowest SSE) are designated as the
optimized parameters.

5. The average values of {x1, x2} = {x̄1, x̄2} from each run for each HS algorithm are
obtained, where,

x̄i =
∑k=10

k=1 xik

10
, (i = 1, 2), (k = 1, 2, . . . , 10). (23)

Subsequently, {x̄1, x̄2} are designated as the overall optimized SIR parameters with
respect to each algorithm, thus xoptimized = {x̄1, x̄2}. Note that the identical common
and specific control parameters, as well as the identical HM and f , are used in this
study to ensure a fair comparison among the HS algorithms.

Table 2. Specific control parameters of Harmony Search (HS) algorithms.

Algorithm HMCR PAR PAR HMCRmin HMCRmax PARmin PARmax BWmin BWmax Pm Pc LP HMCRm PARm

SHS 0.95 0.3 0.01 - - - - - - - - - - -
IHS 0.95 - - - - 0.99 0.01 0.001 1/(20x(UB-LB)) - - - - -

NGHS - - - - - - - - - 0.005 - - - -
SGHS - - - - - - - 0.001 1/(20x(UB-LB)) - - 100 0.98 0.9
ITHS 0.95 - - - - 0.99 0.01 - - - - - - -
NSHS - - - - - - - - - - - - - -
GDHS - - - - - - - - - - - - - -
PAHS - - - 0.99 0.7 0.99 0.01 0.001 1/(20x(UB-LB)) - - - - -
ESHS - - - - - - - - - - - - - -

IBGHS - 0.3 0.01 - - - - - - 0.005 0.9 - - -

3.4. Evaluation of HS Estimation and Performance Comparison

The accuracy of the SIR parameter estimates is deduced from the fitness values (SSE),
where the algorithm with lowest fitness is designated as the best performing estimator and
vice-versa. The optimized epidemiological parameters xoptimized are supplied to the SIR
model once again to produce a projection of simulation for a period of 20 subsequent days
from the end date of calibration period in order to evaluate the predictive capability of
SIR model while using the parameters that were estimated from HS algorithms. Let CT be
the observed cumulative infectious cases on the projection period and ĈT be the projected
SIR model simulated cumulative infectious cases using xoptimized, then the accuracy of
estimation is evaluated by computing the Root Mean Squared Error (RMSE) between CT
and ĈT in the period of projection using:

RMSE =

√
∑T=239

T=220(CT − ĈT)2

20
. (24)

The accuracy of the SIR model’s projected simulation is decided based on the RMSE
value, where a lower RMSE value indicates a better prediction and vice-versa. Eventually,
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the predictive capability indicates the parameter estimation accuracy of the HS variants.
The corresponding RMSE for each algorithm within the same data set will be statistically
compared. The comparison is performed while using the Friedman test to see whether there
is an overall significant difference in the estimations produced by each of the algorithms.
Furthermore, if the performance of SHS is found to be comparable with the rest of the
HS variants, then the post-hoc procedure of Wilcoxon signed-rank tests is conductedin
order tto determine whether there is any statistically significant difference between the
estimation performance of SHS and the rest of the HS variants individually.

4. SIR Simulation Experiments and Discussion

In this section, SIR simulation experiments are performed to illustrate the ability of
HS algorithms as an efficacious estimator of SIR parameters. All of the variants of HS
algorithm were coded in MATLAB R2017b on a laptop computer with 2.50 GHz Intel
i7–4710HQ CPU with 32 GB of RAM. The discussion is discretely presented for each data
set used in this study.

4.1. Simulations and Projected Simulations
4.1.1. USA Data Set (United States of America)

Table 3 presents the optimized epidemiological parameters and corresponding fitness
values (average from ten independent runs) for the USA data set. Figure 2 displays
the visualization of the 220 days simulation together with the 20 days projected simulation
using the optimized parameters. Visual inspection for USA data set is not informative
enough as some of the lines representing the algorithms overlapped, which suggested that
the estimates are very close to each other, except for NGHS, IBGHS, SHS, ITHS, ESHS,
PAHS, and IHS that are visible. Simulations of each algorithms for approximately the
first 100 days were indeed close to each other as well as to the observed cumulative cases.
Beginning from the hundredth day of the outbreak, the simulations of each algorithm
showed differences while they started deviating from the observed values, except for PAHS
and IHS, which are still intact with the observed values. The projected simulation for
subsequent 20 days were consistent in terms of the pattern in the calibration period. It is
observed from the fitness values (SSE) in Table 3 that IHS appears to be the best performing
estimator for USA data set, while NGHS is the least performing estimator.

Table 3. USA: Optimized parameters and corresponding fitness.

Algorithm x1(β) x2(γ) f (x) (SSE)

SHS 0.4208 0.0931 1098.33
IHS 0.4198 0.0938 1072.83

NGHS 0.4212 0.0924 1174.67
SGHS 0.4202 0.0934 1076.62
ITHS 0.4203 0.0933 1082.46
NSHS 0.4202 0.0934 1077.16
GDHS 0.4202 0.0934 1077.14
PAHS 0.4198 0.0938 1073.06
ESHS 0.4202 0.0934 1077.22

IBGHS 0.4210 0.0921 1132.08
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Figure 2. USA: Simulation for 220 days (solid line) and projected simulation for 20 days (dashed line).

For the USA data set, it is observed that the simulation from each HS algorithms are
not very far off the observed cumulative cases, even in the projection period. Most of
the simulations are similar as far as the parameters’ values are concerned and they were
able to approximately resemble the observed trend. Simulations of NGHS and IBGHS
are the farthest deviation from the actual values. The similar behavior between these two
algorithms may be due to the use of genetic mutation in the improvisation step that sets
them apart from the rest of the algorithms.

4.1.2. FR Data Set (France)

Table 4 provides the optimized epidemiological parameters and the corresponding fit-
ness values (the average from 10 independent runs) for the FR data set. The visualization of
the 220 days simulation together with the 20 days projected simulation using the optimized
parameters are depicted in Figure 3. The simulations can be visually inspected as the lines
representing the algorithms do not overlap each other except for SHS, which overlaps with
GDHS. During the calibration period the simulation of IHS was similar but not so close to
ESHS and PAHS. However, in the projection period, IHS’s simulation seems to be closer to
ESHS and PAHS. The other groups of algorithms that produced similar simulations are
ITHS, NSHS, SGHS and SHS, GDHS, IBGHS. The simulations started diverging from each
after day 60 of the outbreak, and gradually digressed from the observed cumulative values
all the way up to the projection period. The projected simulation for subsequent 20 days
depicted a further deviance of the simulations from the observed values. It is observed
from the fitness values (SSE) in Table 4, that IBGHS appears to best performing estimator
for FR data set, while NGHS is the least performing estimator, just as the case of USA
data set.
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Table 4. FR: Optimized parameters and corresponding fitness.

Algorithm x1(β) x2(γ) f (x) (SSE)

SHS 0.2208 0.1227 1002.11
IHS 0.2221 0.1223 1211.77

NGHS 0.2224 0.1220 1427.31
SGHS 0.2213 0.1225 1101.25
ITHS 0.2214 0.1226 1102.71
NSHS 0.2213 0.1226 1102.42
GDHS 0.2208 0.1228 992.04
PAHS 0.2218 0.1226 1125.00
ESHS 0.2218 0.1226 1125.36

IBGHS 0.2207 0.1228 987.31
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Figure 3. FR: Simulation for 220 days (solid line) and projected simulation for 20 days (dashed line).

For the FR data set, observe that the simulations are slightly far off the observed
cumulative cases. The simulations were not able to accurately mimic the observed trend.
NGHS’s simulation was apart all the way, whereas we can infer that the simulations of
IHS, ESHS, and PAHS are similar; ITHS, NSHS, and SGHS are alike; and finally, SGHS,
GDHS, SHS, and IBGHS are close to each other. NGHS’s simulation is again the farthest
and different from the rest, which is probably due to the use of genetic mutation, which
sets it apart from the rest. Genetic mutation is also used in IBGHS, but the standard PAR
setting in IBGHS could have contributed to the high similarity in behavior as SHS than
NGHS. Hence, for this particular data set, the PAR parameter was more influential then
genetic mutation, as compared to the USA data set.

4.1.3. SK Data Set (South Korea)

Table 5 presents the optimized epidemiological parameters and the corresponding
fitness values (average from 10 independent runs) for the SK data set. Figure 4 displays
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the visualization of the 220 days simulation, together with the 20 days projected simu-
lation using the optimized parameters. The simulations can be well visualized as the
lines representing each algorithm is distinct, except for SHS, which overlaps with ESHS.
The simulations started departing from the observed cumulative cases as early as the
fiftieth day of the outbreak. The band of simulations also started deviating around the
same time and was gradually separated up to the projection period. All of the simulations
were distinguishable, except in the case of IHS and NSHS, which were close to each other
and SHS and ESHS that were similar. The projected simulation for subsequent 20 days
indicated a larger deviation of the simulations from the observed values. We observe from
the fitness values (SSE) in Table 5 that ITHS appears to be the best performing estimator for
SK data set, while NGHS is the least performing estimator, just as the case of USA and FR
data sets.

Table 5. SK: Optimized parameters and corresponding fitness.

Algorithm x1(β) x2(γ) f (x) (SSE)

SHS 0.3125 0.1012 2382.52
IHS 0.3137 0.1011 2510.07

NGHS 0.3142 0.1014 2531.25
SGHS 0.3120 0.1013 2203.09
ITHS 0.3140 0.1012 2172.45
NSHS 0.3137 0.1011 2508.21
GDHS 0.3130 0.1012 2500.66
PAHS 0.3140 0.1014 2528.17
ESHS 0.3125 0.1011 2381.76

IBGHS 0.3135 0.1012 2504.14
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Figure 4. SK: Simulation for 220 days (solid line) and projected simulation for 20 days (dashed line).
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For the SK data set, observe that the simulations are quite far off the observed cu-
mulative cases, with NGHS being the farthest and ITHS being the nearest. Yet, ITHS’s
simulation is still far off the observed cumulative cases comparatively. The simulations
were not able to resemble the observed trend well. The simulation for SK data set is clearly
not as good as USA or FR data sets. the simulations of all the algorithms were distinct
except for the overlapping SHS and ESHS. NGHS’s simulation is again very different from
the rest, probably due to use of genetic mutation, which sets it apart from the rest. As far as
this data set is concerned, it is also interesting to observe ESHS that requires zero parameter
setting and uses Gaussian mutation in the place of random generation of harmony, behaves
somewhat similar to SHS.

4.1.4. IR Data Set (Ireland)

Table 6 provides the optimized epidemiological parameters and the corresponding
fitness values (average from 10 independent runs) for the IR data set. Figure 5 depicts
the visualization of the 220 days simulation, together with the 20 days projected simulation
using the optimized parameters. The visual inspection of the simulations is informative,
although the lines representing most of the algorithms are quite close to each other, with
only SGHS and PAHS overlapping. The simulations drifted away from the observed
cumulative cases as early as before the fiftieth day of the outbreak itself. However, the sim-
ulations of SGHS, PAHS, and NSHS managed to stay intact with the observed values, even
during the projection period. On the other hand, the simulations of IHS, IBGHS, and SHS
were still close to the observed values and they became closer in the projection period.
ITHS remained steadily far from the observed values, while ESHS, NGHS, and GDHS
maintained a constant separation from the observed values. The projected simulation for
subsequent 20 days indicated a smaller deviation of the simulations from the observed
values, except for ITHS. It is observed from the fitness values (SSE) in Table 6 that NSHS
appears to be the best performing estimator for IR data set, while ITHS emerged as the
least performing estimator.

Table 6. IR: Optimized parameters and corresponding fitness.

Algorithm x1(β) x2(γ) f (x) (SSE)

SHS 0.3426 0.1044 970.02
IHS 0.3427 0.1044 1078.34

NGHS 0.3436 0.1042 1233.88
SGHS 0.3425 0.1043 703.22
ITHS 0.3441 0.1042 1827.38

NSHS 0.3420 0.1043 662.22
GDHS 0.3432 0.1043 1202.47
PAHS 0.3425 0.1043 701.58
ESHS 0.3436 0.1041 1247.19

IBGHS 0.3425 0.1044 971.54

For the IR data set, it is observed that the simulations are reasonably close to the
observed cumulative cases, except for ITHS. This shows that most of the simulations
managed to mimic the observed trend well. Excluding ITHS, we can group the algorithms
with similar simulations as (i) ESHS, NGHS, and GDHS; (ii) IHS, IBGHS, and SHS; and, (iii)
SGHS, PAHS, and NSHS. Note that the difference in the simulation of ITHS was better in
the previous three data sets, but it appeared to be the worst in this data set. The combination
of algorithms that produced similar simulations is also different from combinations in
previous data set, notably the FR data set.
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Figure 5. IR: Simulation for 220 days (solid line) and projected simulation for 20 days (dashed line).

4.1.5. SG Data Set (Singapore)

Table 7 provides the optimized epidemiological parameters and the corresponding
fitness values (average from 10 independent runs) for the SG data set. Figure 6 displays
the visualization of the 220 days simulation, together with the 20 days projected simulation
using the optimized parameters. The simulations are distinguishable, thus the visualization
is informative, except for a slight overlap between ITHS and IBGHS. The simulations band
begin to diverge from the observed cumulative cases approximately around the hundredth
day of the outbreak, except for the simulations of ESHS, PAHS, and IHS, which diverged
gradually. While other simulations deviated from the rest, ESHS, PAHS, and IHS were
close to each other until day 200 of the outbreak. Only after that, the simulations diverged
from each other in a small amount up to the projection period. All of the simulations
were far from the observed values, resembling a similarity with the case of simulations
in the SK data set. The projected simulation for subsequent 20 days indicated an even
larger deviation of the simulations from the observed values. It is observed from the fitness
values (SSE) presented in Table 7 that IHS appears to best performing estimator for SG data
set, while ITHS is the least performing estimator, similar to IR data set.

For the SG data set, it is observed that the simulations are quite far off the actual
cumulative cases, with ITHS being the farthest and IHS being the nearest. Nevertheless,
IHS’s simulation is still far off the observed cumulative cases. The simulations were not
able to resemble the observed trend well and it is undoubtedly not as good as for USA, FR,
and IR data sets. The quality of simulations are similar to the SK data set. The simulations
of ITHS and IBGHS are really far off the observed values. We note that the simulations of
ITHS and IBGHS are similar, NSHS and SGHS are close to each other, GDHS and NGHS
are approximately close, ESHS and PAHS are close to each other, while SHS and IHS were
not similar or close to the rest.
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Table 7. SG: Optimized parameters and corresponding fitness.

Algorithm x1(β) x2(γ) f (x) (SSE)

SHS 0.3604 0.1331 2015.77
IHS 0.3582 0.1334 1002.64

NGHS 0.3600 0.1332 1799.32
SGHS 0.3607 0.1331 2238.65
ITHS 0.3612 0.1328 2564.23
NSHS 0.3608 0.1331 2241.29
GDHS 0.3600 0.1333 1805.79
PAHS 0.3585 0.1333 1542.52
ESHS 0.3588 0.1332 1622.38

IBGHS 0.3611 0.1328 2557.87
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Figure 6. SG: Simulation for 220 days (solid line) and projected simulation for 20 days (dashed line).

4.2. Performance Comparison

Following the SIR simulation experiments that were performed on the five data sets,
it is noted that the performance of each algorithm (based on the fitness values (SSE))
varies across the data sets. Based on the parameter estimates for each data set presented in
Tables 3–7, the estimates produced by each algorithm are fairly similar, which indicates that
the optimization performed is consistent due to the underlying nature of HS, regardless
of the type of HS variant. Table 8 lists the best performing algorithm for each data set.
Apparently, there is no one clear winner algorithm for this particular application of HS.
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Table 8. Best performing algorithm for each data set.

Data Set Best Algorithm

USA IHS
FR IBGHS
SK ITHS
IR NSHS
SG IHS

We obtain the RMSE values from the 20 days projected SIR simulation while using
Equation (24) in order to statistically compare the performance of each algorithm within
each of the data sets. The Friedman test is conducted to determine whether there is any
statistically significant differences among the estimation performances (in terms of RMSE)
of each algorithm. Table 9 displays the RMSE values.

Table 9. RMSE.

Algorithm USA FR SK IR SG

SHS 25.39 12.86 29.73 16.66 28.44
IHS 12.95 18.73 34.12 18.55 17.23

NGHS 38.12 27.32 39.64 25.44 24.22
SGHS 13.85 13.63 26.24 13.45 30.66
ITHS 15.34 14.75 25.44 37.89 39.14
NSHS 14.76 14.28 34.08 10.98 31.28
GDHS 14.22 12.19 33.64 22.62 25.22
PAHS 13.02 16.38 30.08 13.03 19.86
ESHS 14.92 16.59 38.7 26.12 21.46

IBGHS 33.69 11.35 33.78 16.94 38.37

The low RMSE values within each data set indicates that the predictive capability
of SIR model while using the HS optimized parameters are fairly good. Eventually, it
attests that the parameter estimation accuracy of HS variants is satisfactory. The Friedman
test elicited no statistically significant difference in the estimation performance of the
HS algorithms at significance level of 0.05 (χ2(9) = 11.749, p = 0.228). It is noteworthy
to observe that the estimation performance of SHS is comparable with the rest of the
HS variants and fairly consistent across the data sets. The simulations of SHS are also
reasonably close to the observed cumulative cases in FR, SK, IR, SG, and USA data sets
(in the closest order). The post-hoc analysis for SHS is performed using the Wilcoxon
signed-rank tests in order to identify whether there is any statistically significant difference
between the estimation performance of SHS and the rest of the HS variants individually.
Table 10 displays the test results.

Table 10. Post-hoc analysis for standard HS (SHS).

Test Z p-Value

SHS–IHS −0.405 0.686
SHS–NGHS −1.753 0.080
SHS–SGHS −1.214 0.225
SHS–ITHS −0.674 0.500
SHS–NSHS −0.405 0.686
SHS–GDHS −0.135 0.893
SHS–PAHS −1.214 0.225
SHS–ESHS −0.135 0.893

SHS–IBGHS −1.483 0.138
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The Wilcoxon signed-rank tests that were conducted with a Bonferroni correction
applied at the resulting significance level of 0.05

9 = 0.006 elicited no statistically significant
difference in the estimation performance of SHS when compared to the rest of the HS
variants individually. Indeed, the insignificant difference supports that the performance of
SHS is comparable. Therefore, although SHS may not be the best performing algorithm
for any of the data sets, the consistency and statistical tests’ results elucidate that SHS is
competent enough to be a potential efficacious estimator for the epidemiological parameters
of SIR model. A slight manual fine-tuning of the control parameters may do the job of
increasing the estimation accuracy of SHS. In essence, the primary advantages of applying
HS to estimate the epidemiological parameters of compartmental models are as follows:

1. No initial values for the epidemiological parameters are required. One does not
need to adapt the values of epidemiological parameters from previous studies, so as
to alleviate any bias in the estimation process.

2. No specified upper and lower bounds for the epidemiological parameters are re-
quired to suit the data sets. The burdensome process of finding an appropriate range
of the parameters for each data set are evaded by using the complete range of the
parameters, regardless of the data set. This may increase the computational time,
but it can be traded off with better computing resources.

3. No in-depth information about the infectious disease is necessary. HS optimiza-
tion can well be applied to other infectious disease modeling without extra specific
information about the disease.

5. Conclusions and Future Work

The application of HS is a novel approach in the field of epidemiology, particularly
in epidemiological modeling. In this study, HS was implemented in order to estimate the
epidemiological parameters of the prototypical compartmental SIR model as an optimiza-
tion problem. Ten variants of HS algorithm were applied on five data sets to simulate
the trajectory of COVID-19 cumulative infectious cases. The computational experiments
demonstrated the ability of HS to be successfully applied to epidemiological modeling and
as an efficacious estimator for the model parameters. As such, HS is proposed as a potential
alternative estimation tool for the epidemiological parameters. An interesting insight from
this study is that SHS is competent enough and it exhibited comparable performance with
the rest of the HS variants in this particular application of HS optimization. For future work,
the application of HS can be expanded to parameter estimations in advanced compart-
mental epidemiological models (e.g.,: SEIR model) and to the modeling of other existing
infectious diseases (e.g.,: H1N1) or potential novel infectious diseases in the future.
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