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1 Introduction

In this article we provide a new asymmetric encryption design based on the
difficulty of solving solving a diophantine equation with infinitely many
solutions and solving a system of diophantine equations with unknown
exponent . Further discussion on this problem will be provided in the following
sections.

2 A new security notion for asymmetric encryption

The following 2 sub-sections provide definitions and discussion on the the so-
called underlying security primitive which the our asymmetric scheme relies
on.

2.1 Linear diophantine equations with infinitely many solutions

Definition 1. To determine the preferred solution for a diophantine equation
where that preferred solution is from a set of infinitely many solutions.

To further understand and obtain the intuition of Definition 1, we will now
observe a remark by Herrmann and May [1]. It discusses the ability to retrieve
variables from a given linear Diophantine equation. But before that we will put
forward a famous theorem of Minkowski that relates the length of the shortest
vector in a lattice to the determinant[1]:
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Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

||v|| ≤
√
ωdet(L)

1
ω

We now put forward the remark.

Remark 1. There is a method for finding small roots of linear modular equations
a1x1 + a2x2 + ... + anxn ≡ 0 (mod N) with known modulus N . It is further
assumed that gcd(ai, N) = 1. Let Xi be upper bound on |xi|. The approach to
solve the linear modular equation requires to solve a shortest vector problem in a
certain lattice. We assume that there is only one linear independent vector that
fulfills the Minkowski bound (Theorem 1) for the shortest vector. Herrmann and
May showed that under this heuristic assumption that the shortest vector yields
the unique solution (y1, ..., yn) whenever

n∏
i=1

Xi ≤ N.

If in turn we have
n∏
i=1

Xi > N1+ε.

then the linear equation usually has N ε many solutions, which is exponential in
the bit-size of N . So there is no hope to find efficient algorithms that in general
improve on this bound, since one cannot even output all roots in polynomial
time.

We now put forward a corollary.

Corollary 1. A linear diophantine equation f(x1, x2, ..., xn) = a1x1 + a2x2 +
... + anxn = N , with

n∏
i=1

xi > N1+ε.

is able to ensure secrecy of the preferred sequence x = {xi}.

Remark 2. In fact if one were to try to solve the linear diophantine equation

N = a1x1 +a2x2 + ...+anxn, where
n∏
i=1

Xi > N1+ε, any method will first output

a short vector x = {xi} as the initial solution. Then there will be infinitely many
values from this initial condition that is able to recontruct N .

2.2 System of diophantine equations with unknown exponent(s)
and reduction moduli

It is well known that from:

A ≡ ga (mod p)
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if given the tuple (A, g, p) to determine the unknown exponent a (if the tuple
are “strong”) would be difficult. In fact this is the discrete log problem (DLP).

We now extend this feature to the following setting; given:

Ai ≡
k∑
j=1

g
aj
j (mod p)

If given the tuple (Ai), determine (aj , gj , p).

3 Bivariate Function Hard Problem (BFHP)

In this section we introduce a particular case of a linear diophantine equation in
2 variables that is able to secure its private parameters under some conditions.
This section explores subsection 2.1 in more detail for the mentioned case.

Definition 2. We define Z+
(2m−1,2m−1) as a set of positive integers in the inter-

val (2m−1, 2m − 1). In other words, if x ∈ (2m−1, 2m − 1), x is an m-bit positive
integer.

Proposition 1. Let A = f(x1, x2, ..., xn) be a one-way function that maps
f : Zn → Z+

(2m−1,2m−1). Let f1 and f2 be such function (either identical or non-

identical) such that A1 = f(x1, x2, ..., xn), A2 = f(y1, y2, ..., yn) and gcd(A1, A2) =
1. Let u, v ∈ Z+

(2n−1,2n−1). Let (A1, A2) be public parameters and (u, v) be private

parameters. Let
G(u, v) = A1u + A2v (1)

with the domain of the function G is Z2
(2n−1,2n−1) since the pair of positive in-

tegers (u, v) ∈ Z2
(2n−1,2n−1) and Z+

(2m+n−1,2m+n−1) is the codomain of G since

A1u + A2v ∈ Z+
(2m+n−1,2m+n−1).

If at minimum n − m − 1 = k, where 2k is exponentially large for any prob-
abilistic polynomial time (PPT) adversary to sieve through all possible answers,
it is infeasible to determine (u, v) over Z from G(u, v). Furthermore, (u, v) is
unique for G(u, v) with high probability.

Before we proceed with the proof of the above proposition we would like to put
forward 2 remarks.

Remark 3. We remark that the preferred pair (u, v) ∈ Z, is the prf -solution for
(1). The preferred pair (u, v) is one of the possible solutions for (1) from:

u = u0 + A2t (2)

and
v = v0 −A1t (3)

for any t ∈ Z.
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Remark 4. Before we proceed with the proof, we remark here that the dio-
phantine equation given by G(u, v) is solved when the preferred parameters
(u, v) ∈ Z are found. That is the BFHP is prf -solved when the preferred param-
eters (u, v) ∈ Z are found.

Proof. We begin by proving that (u, v) is unique for each G(u, v) with high
probability. Let u1 6= u2 and v1 6= v2 such that

A1u1 + A2v1 6= A1u2 + A2v2 (4)

We will then have

Y = v2 − v1 =
A1(u1 − u2)

A2

Since gcd(A1, A2) = 1 and A2 ≈ 2n, then the probability that Y is an integer is
2−n. Then the probability that v1 − v2 is an integer solution not equal to zero
is 2−n. Thus v1 = v2 with probability 1− 2−n.

We next proceed to prove that to prf -solve the diophantine equation given by
(1) is infeasible. The general solution for G(u, v) is given by (2) and (3) for some
integer t.

To find u within the stipulated interval u ∈ (2n−1, 2n − 1) we have to find
the integer t such that the inequality 2n−1 < u < 2n − 1 holds. This gives

2n−1 − u0

A2
< t <

2n − 1− u0

A2

Then, the difference between the upper and the lower bound is ≈ 2n−2

2m .

Since n−m− 1 = k where 2k is exponentially large for any probabilistic poly-
nomial time (PPT) adversary to sieve through all possible answers, we conclude
that the difference is very large and finding the correct t is infeasible. This is
also the same scenario for v.

Example 1. Let A1 = 191 and A2 = 229. Let u = 41234 and v = 52167.
Then G = 19821937. Here we take m = 16 and n = 8. We now construct
the parametric solution for this BFHP. The initial points are u0 = 118931622
and v0 = −99109685. The parametric general solution are: u = u0 + A2t and

v = v0 − A1t. There are approximately 286 ≈ 29 (i.e. 216

229 ) values of t to try
(i.e. difference between upper and lower bound), while at minimum the value is
t ≈ 216. In fact, the correct value is t = 519172 ≈ 219.

4 A new asymmetric primitive

In this section we provide the reader with a working cryptographic primitive
that is based upon the BFHP.
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• Key Generation by Along

INPUT: The size n of the parameters.
OUTPUT: A public key tuple (n, e1, e2, e3) and private keys (d1, d2, d3, p).

1. Generate private random n-bit prime,p.
2. Generate e where gcd(e, p − 1) = 1. For reasons to be observed later the

value of e is with reference to the amount of data the user intends to relay.
3. Compute private d1 ≡ e−1 (mod p− 1).
4. Generate secret random n-bit g1, u1, u2, h2, h3 ∈ Zp.
5. Compute secret h3 = u1 − h1 and h4 = u2 − h2.
6. Compute secret du2 ≡ u−12 (mod p− 1).
7. Compute secret g2 ≡ gu1du2

1 (mod p).
8. Compute public values e2 ≡ agh2

2 (mod p) and e3 ≡ gh3
1 (mod p).

9. Compute private d3 ≡ e−12 (mod p).
10. Compute private k = e3d3 (mod p).
11. Compute secret a ≡ k(gh1

1 gh2
2 − gh3

1 gh4
2 )−1 (mod p).

12. Compute public values e1 ≡ agh1
1 (mod p).

13. Compute private d2 ≡ a1g
h4
2 (mod p).

14. Return the public key tuple (n, e1, e2, e3) and private key tuple (d1, d2, d3, p).

• Encryption by Busu

INPUT: Along’s public key set (n, e1, e2, e3) and the message M tuple (b0, b1, b2)
where b0 ≈ 2n−1 and b1, b2 ≈ 2(e−2)n.

OUTPUT: A ciphertext pair (C1, C2).

1. Compute the first ciphertext C1 = be0 + b1(e1e3 + 1) + b2(e1e2).
2. Compute the second ciphertext C2 = b1e2 + b2e3.
3. Send the ciphertext pair C = (C1, C2).

• Decryption by Along

INPUT: The ciphertext pair C = (C1, C2) and private key tuple (d1, d2, d3, p).
OUTPUT: The message tuple M = (b0, b1, b2).

1. Compute b0 ≡ (C1 − C2(d2 + d3))
d1 (mod p).

2. Solve the simultaneous equations C1 − be0 = b1(e1e3 + 1) + b2(e1e2) and
C2 = b1e2 + b2e3 to obtain (b1, b2).

3. Return the message tuple M = (b0, b1, b2).
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Proposition 2. The decryption process is correct.

Proof. From gu1
1 − gu2

2 ≡ gh1
1 gh3

1 − gh2
2 gh4

2 ≡ 0 (mod p), we have

(C1 − C2(d2 + d3))
d1 ≡ (be0 + b1 + a[b1[gu1

1 − gu2
2 ] + b2[gh1

1 gh2
2 − gh3

1 gh4
2 ]]− [b1 + b2k])d1

≡ (be0 + b1 + b2k − [b1 + b2k])d1

≡ (be0)d1

≡ b0 (mod p).

We obtain the exact b0 since b0 < p, which ensures that no modular reduction
has occurred. Next, to obtain (b1, b2) is trivial.

In the next section we will point out locations where the fundamental source of
security situated.

5 The fundamental source of security

We will dissect the mathematical structures introduced in the above so-called
“cryptosystem”. We will begin at looking at Along’s parameters first.

5.1 Security of the ciphertext

– Observe the ciphertext given by C1 = be0 + b1(e1e3 + 1) + b2(e1e2). We have
C1 ≈ 2(e+2)n while be0b2b3 ≈ 23en. Thus, be0b2b3 > C1.

– We have b1, b2 ≈ 2en while e2, e3 ≈ 2n, thus the equation C2 = b1e2 + b2e3
is “protected” by BFHP.

– We also have C2 ≈ 2(e+1)n while b1b2 ≈ 22en. Thus, b1b2 > C2.

– To solve the simultaneous equations of C1, C2 it is a system of 2 equations
with 3 variables.

5.2 Security of the public key

Security type-1
Observe the following public key equation:

e1e3 ≡ agu1
1 (mod p) (5)

This is an equation with the following unknown tuple (a, g1, u1, p). From e2 ≡
gh2
2 ≡ (gu1du2

1 )h2 (mod p), the adversary does not obtain any helpful information
to “study” equation (5).



A new security notion for asymmetric encryption 7

Security type-2
Now from another relation:

e1e3 − e2(agh4
2 ) ≡ 0 (mod p) (6)

the adversary can assume the following strategy:

– Set g1 = g′1, u1 = u′1, p = p′.
– Compute a′ ≡ (e1e3)(gu1

1 )′−1 (mod p′).
– Now, choose random u2 = u′2 and compute du2′ ≡ (u2)′−1 (mod p′ − 1).
– Now, compute g′2 ≡ (gu1

1 )′du2
′

(mod p′).
– From e2 = g′h2

2 (mod p′), the adversary would face the DLP to determine
h2 = h′2 from his own choice of (g′2, p

′).
– If the adversary is able to determine h′2 (i.e. then he would be able to com-

pute h′4 = u′2 − h′2) from the adversaries own choice of parameters, and the
probability that

e1e3 − e2(a′g
′h′4
2 ) ≡ 0 (mod p′)

is 2−4n.
– A faster approach for the adversary is to check whether

e1e3 − a′g
′u′2
2 ≡ 0 (mod p′).

In this case the probability is still 2−4n.
– Solving equation (6) could also be viewed as solving a “system” of dio-

phantine equations with unknown exponent .

Security type-3
Observe the following system of equations:

e1e3 − e2d2 ≡ 0 (mod p) (7)

e1e2 − e3d2 ≡ k (mod p) (8)

e2d3 + e3d3 ≡ 1 + k (mod p) (9)

When we eliminate the pair (d2, k), we have the equation

e2d3(e2 + e3) + e1e
2
3 − e1e

2
2 − e2 ≡ 0 (mod p) (10)

– To solve equation (10), we set p = p′ and compute d′3.
– Then from (9) obtain k′.
– Then from (8) obtain d′2.
– Then check whether (7) holds or not. The probability that (7) holds is 2−n.

6 Subset sum - like problem?

To obtain parameters that satisfy equation (5) “mimics” the subset sum problem.
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7 Collision type attacks

We dedicate this section to discuss the possibility of designing a collision type
attack on our new scheme.

8 Achieving IND-CCA2

It is obvious that the new scheme achieves IND-CPA. But how about IND-
CCA2?

9 Conclusion

This paper presents a new cryptosystem that has advantages in the following
areas against known public key cryptosystems:

1. It has a complexity order of O(n2) during encryption and O(n3) during
decryption.

2. Mathematically, an adversary does not have any advantage to attack the
published public key or the ciphertext.

3. Does the new scheme produce “cylic-type” features that would allow a col-
lision type attack to be designed?

4. If a collision type attack cannot be designed, how do we propose to evaluate
the scheme in order to suggest a minimum key length?
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