
LECTURE MATERIALS 1 

ENVIRONMENTAL STATISTICS   

1. Environmental Statistics: An Introduction 

Environmental Statistics  

Any models or methods applicable to situations involving uncertainty and variability will be 

relevant in on guise or another to the study and interpretation of environmental problems and 

will thus be part of the armoury of environmental statistics or environmetrics. Barnett (2004) 
 

Measuring the environment is an awesome challange, there are so many things to measure, and 

at so many times and place. Hunter (1994) 

 

Tomorrow is Too Late  
 

• The average European deposits in a lifetime a monument of waste amounting to about 

1000 times body weight; the average North American achieves four times this. 

• Sea-floor sediment deposits around the UK average 2000 times of plastic debris per 

square meter. 

- Over their lifetime, each person in the Western world is responsible for carbon dioxide 

emissions with carbon content on average 3500 times the person’s body weight. Harrison 

(1992) 
 

Well-known Environmental Issues  
 

• Acid rain 

• Accumulation of greenhouse gases 

• Climate change 

• Global warming 

• Deforestation 

• Disposal of nuclear waste products 

• Nitrate leaching 

• Particulate emissions from disel fuel 

• Polluted streams and rivers 

... to name a few... 

 
Greenhouse Gasses emitted in 2000, by source (Stern, 2006).  
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2. Extremes, Outliers  

 

Order Statistics and Extremes 
 

Order statistics are the observations of the random sample, arranged, or ordered, in magnitude 

from the smallest to the largest.  
 

If                         are observations of a random sample of size n from a continuous distribution. 

Then the random variables                             denote the order statistics of the sample. 
nXXX ,...,, 21
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Order statistics have wide applications in statistics. Most of the measures of location and 

dispersion such as the five number summary, range, trimmed mean, inter-quartile range are order 

statistics. 

 

Order Statistics and the Normal Probability Plot 

Malaysian road accident data 

 

 

Distribution of the rth order statistics 
 

Let                          be the order statistics of n independent observations from a distribution of 

continuous type with distribution function F(x) and p.d.f.                      .  Then the p.d.f. of the rth  

order statistics is given by 
 

 

 
 

The largest and the smallest order statistics are known as extremes. It is worth noting that the 

p.d.f. of the smallest order statistics is 

 

  
 

and the p.d.f. of the largest order statistics is 

 

 

 

Outliers 
 

‘We shall define an outlier in a set of data to be an observation (or subset of observations) which 

appears to be inconsistent with the remainder of that set of data.’ 
 

                                                                     – V. Barnett and T. Lewis (1994)  

 

Early History of the Development of Outlier Techniques 
 

The concept of outlier came from Astrophysics even before the formal development of statistics 

and statistical techniques. The term ‘outlier’ was used in astrophysics to distinguish planets 

which are ‘outlying’ in our solar system. 
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Hadlum Versus Hadlum and the Gestation Issue 
 

In 1949, in the case of Hadlum vs Hadlum, Major Hadlum appealed against the failure of an 

earlier petition of divorce. His claim was based on an alleged adultery by Mrs. Hadlum, the 

evidence for which consisted of the fact that Mrs. Hadlum gave birth to a child which was 349 

days later than when Major Hadlum had left the country to serve the nation during the World 

War II. The appeal judge rejected the appeal. 
 

In other similar cases conflicting views had prevailed. In Mr. T vs Mrs. T case also in 1949 the 

court had ruled that 340 days was impossible based on the fact that the average gestation period 

for the human female is 280 days.  
 

A much earlier case resurfaced at about the same time. In 1921, Mr. Gaskil failed in a petition 

for divorce on the grounds of adultery based on an absence of 331 days from home. 

 

Biological Father Versus Statistical Father 

 

Major Hadlum --- Reject divorce petition: 349 days 
 

Mr. T --- Approve divorce petition : 340 days 
 

Mr. Gaskil --- Reject divorce petition : 331 days 
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British Court of Justice Decisions 
 

In 1951, the House of Lords had ruled that the limit is 360 days based on a huge survey 

conducted by the British Medical Association for a sample of 13634 British Births.  
 

Major Hadlum, Mr. T and Mr. Gaskil are all statistical fathers. 

  

Outliers Are Empirical Reality 
 

Hampel et al. (1986) claim that a routine data set typically contains about  1-10% outliers, and 

even the highest quality data set can not be guaranteed free of outliers.  

 

Example: Weight of a baby (in lbs): 7.2, 8.6, 10.0, 11.8, 135, 15.8, 17.6 

 

1261089072543618

Weight

Dotplot of Weight

 
 

Consequences of Outliers 
 

One immediate consequence of the presence of outliers is that they may cause apparent non-

Normality and the entire classical inferential procedure might breakdown in the presence of 

outliers. 
 

Summary Statistics of the Baby Weight Data with and without Outliers 
 

Statistic Without Outlier  With Outlier 

Mean 11.83 lbs 29.4 lbs 

Standard Deviation 4.11 lbs 46.7 lbs 

Range 10.40 lbs 127.8 lbs 

 

Sources of Outliers 
 

Inherent Variability: Natural feature of a population that is uncontrollable.  
 

Measurement Error: The rounding of obtained values or mistakes in recording compound 

measurement error. 
 

Execution Error: Imperfect collection of data. We may inadvertently choose a biased sample or 

include individuals not truly representative of the population we aimed to sample. 
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Observations arising from large variation of the inherent type are called outliers, while 

observations subjected to large measurement error or execution error are termed spurious 

observations (Anscombe, 1960). 
 

Outliers do not inevitably ‘perplex’ or ‘mislead’; they are not necessarily ‘bad’ or ‘erroneous’, 

and the experimenter may be tempted in some situations not to reject an outlier but to welcome it 

as an indication of some unexpectedly useful industrial treatment or surprisingly successful 

agricultural variety. 
 

Identification of Outliers 
 

140120100806040200

Weight

Boxplot of Weight

 
 

The ‘three – sigma’ Rule 
 

If we assume a normal distribution, a single value may be considered as an outlier if it falls 

outside a certain range of the standard deviation.  
 

A traditional measure of the ‘outlyingness’ of an observation ix  with respect to a sample is the 

ratio between its distance to the sample mean and the sample SD: 

 

 

 

Observations with | it | > 3 are traditionally deemed as suspicious (the three-sigma rule), based on 

the fact that they would be very unlikely under normality, since P (|t| > 3) = 0.003 for a random 

variable t with a standard normal distribution.  
 

Weight t 

7.2 -0.475375 

8.6 -0.445396 

10 -0.415418 

11.8 -0.376874 

135 2.26124 

15.8 -0.291221 

17.6 -0.252677 
 

So is there no outlier in this data set??? 
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Masking occurs when we fail to detect the outliers (false negative) 
 

Swamping occurs when observations are incorrectly declared as outliers (false positive) 

 

Grubbs' Test  
 

Grubbs (1969) proposed a test to detect outliers in a univariate data set. It is based on the 

assumption of normality. Grubbs' test is also known as the maximum normed residual test.  
 

The test statistic is defined as 
 

                                                   G =  
 

with x  and s denoting the sample mean and standard deviation respectively.  
 

The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the 

sample standard deviation. For the two-sided test, the hypothesis of no outliers is rejected if  
 

 

                                          G >  

 
 

with   denoting the critical value of the t distribution with n – 2 degrees of freedom and a 

significance level of    /(2n).   
 

For the weight of baby data we obtain the value of G = 2.26. At the 5% level of significance the 

critical value is 2.02. Thus Grubbs test identifies the case 5 as an outlier. 

 

Grubbs' test detects one outlier at a time. This outlier is expunged from the dataset and the test is 

iterated until no outliers are detected. However, multiple iterations change the probabilities of 

detection, and the test should not be used for sample sizes of six or less since it frequently tags 

most of the points as outliers. This test may not be effective when swamping occurs in the data. 

 

Dixon's Q-test  
   

The Dixon's Q-test is a very simple test for outliers when we suspect that outliers are extreme 

observations in the data set.   
 

Q-test is based on the statistical distribution of "subrange ratios" of ordered data samples, drawn 

from the same normal population. Hence, a normal distribution of data is assumed whenever this 

test is applied.   
 

The test is very simple and it is applied as follows:  
 

1. The n values comprising the set of observations under examination are arranged in 

ascending order:  1x  <  2x  < . . . <  nx .  

 

2. The statistic Q is a ratio defined as the difference of the suspect value from its nearest one 

divided by the range of the values. Thus, for testing  1x  or  nx  (as possible outliers) we 

use the following values:  
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Q =                            or  

 
 

3. The obtained Qobs value is compared to a critical Q-value (Qcrit) found in tables.   
 

4. If Qobs > Qcrit, then the suspect value can be characterized as an outlier. 

 
Table for Critical Values of Q  
 

                                  
 

For the weight of baby data, the value of Q = 0.9186. At the 5% level the critical value is 0.568. 

Thus this test identifies the case 5 as an outlier.  

 

3. Robust Statistics 
 

Risk in Deleting Outliers 
 

Summary Statistics of the Baby Weight Data with and without Outliers suggests that a simple 

way to handle outliers is to detect them and remove them from the data set. Deleting an outlier, 

although better than doing nothing, still poses a number of problems: 
 

• When is deletion justified? Deletion requires a subjective decision. When is an 

observation ‘outlying enough’ to be deleted? 
 

• The user may think that ‘an observation is an observation’ (i.e., observations should 

speak of themselves) and hence feel uneasy about deleting them. Sometimes atypical data 

may be the most informative data and its deletion may outliers. 
 

• Since there is generally some uncertainty as to whether an observation is really atypical, 

there is a risk of deleting ‘good’ observations, which results in underestimating data 

variability. 
 

• Since the results depend on the user’s subjective decisions, it is difficult to  determine the 

statistical behaviour of the complete procedure.   
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Ozone Depletion History 
 

• In 1985 three researchers 

(Farman, Gardinar and Shanklin) were 

puzzled by data gathered by the British 

Antarctic Survey showing that ozone 

levels for Antarctica had dropped 10% 

below normal levels 

 

• Why did the Nimbus 7 satellite, 

which had        instruments aboard for 

recording ozone levels, not record 

similarly low ozone concentrations?  

 

• The ozone concentrations recorded by the 

satellite were so low they were being 

treated as outliers by a computer 

program and discarded! 

 
 

 

The word “Robust” literary means something “very strong.” So robust statistics are those 

statistics which do not breakdown easily. The term robustness signifies insensitivity to small 

deviations from the assumption. That means a robust procedure is nearly as efficient as the 

classical procedure when classical assumptions hold strictly but is considerably more efficient 

over all when there is a small departure from them. One objective of robust techniques is to cope 

with outliers by trying to keep small the effects of their presence. Consequently, we should 

require resistant estimators (Tukey, 1977). The analogous term used in the literature: Resistant 

Statistics 

 

Classical and Robust Approaches to Statistics 

 

Main features:  
 

• Data collected in a broad range of applications frequently contain one or more atypical 

observations, called outliers. 
 

• Classical estimates can be very adversely influenced by outliers, even by a single one. 
 

• There exist robust parameter estimate that provide satisfactory results when the data 

contain outliers, as well as when the data are free of them. 
 

Here we introduce several statistics which are robust in the presence of outliers. Median and 

trimmed mean are robust measures of location. For the measure of dispersion we can use the 

normalized median absolute deviation (MADN). For a set of data the Median Absolute Deviation 

(MAD) is defined as 
 

                                      MAD (x) = Med {|x – Med (x)|}   
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To make the MAD comparable to the SD in terms of efficiency, we consider the normalized 

MAD defined as 

                                       MADN (x) = MAD (x) / 0.6745 
  
Two other well-known dispersion estimates are the range defined as 
 

R =  nx  –   1x  

 

and the inter-quartile range (IQR) defined as 
 

IQR (x)  =  3Q  – 1Q  
 

Both of them are based on order statistics; the former is clearly very sensitive to outliers, while 

the latter is not. 

 

Summary Statistics of the Baby Weight Data with and without Outliers 
 

Statistic Without Outlier  With Outlier 

Mean 11.83 lbs 29.4 lbs 

Median 10.90 lbs 11.80 lbs 

Standard Deviation 4.11 lbs 46.7 lbs 

MADN 4.45 lbs 5.93 lbs 

Range 10.40 lbs 127.8 lbs 

IQR 8.0 lbs 9.0 lbs 

 

Robust Outlier Detection Methods 
 

Robust t like Statistic 
 

Let us now use the robust plug-in technique Imon, Midi and Rana (2013) to obtain a robust t-like 

statistic by replacing mean by median and SD by the normalized median absolute deviation 

(MADN). Thus the modified statistic becomes 

 

 

 

Observations with |    | > 3 are identified as outliers. 

 

Now we compute robust t like statistic as given below.  
  

Weight t Robust t 

7.2 -0.475375 -1.77278 

8.6 -0.445396 -1.23324 

10 -0.415418 -0.693695 

11.8 -0.376874 0 

135 2.26124 47.4796 

15.8 -0.291221 1.54154 

17.6 -0.252677 2.23524 
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The above results show that robust t can correctly identify the outlier. 

 

Interquartile Range  
 

The above-mentioned strategies for identifying outliers are probably most appropriate for 

symmetric unimodal distributions.  
 

If a distribution is skewed, it is recommended to calculate the threshold for outliers from the 

interquartile distance:   
 

1Q   – 1.5 IQR  <  ix  <  3Q  + 1.5 IQR 
 

For the weight of the baby data, we obtain 
 

                    1Q   = 8.6                   3Q   = 17.6                   IQR = 9 
 

The threshold values for this data set are 0 and 41.1. Hence the case 5 is declared as an outlier.  

 

Hampel’s Test 

 

In recent years Hampel (1984)’s test for outliers has become very popular in data mining and 

knowledge discovery [see Ben-Gal (2005)] 
 

According to this rule an observation ix   is identified as an outlier if 
 

ix  – median(x)  > 4.5 MAD(x) 
 

It is interesting to note that Hampel’s test is equivalent to robust t test. Recall that according to 

the robust t test an observation is identified as an outlier if 

 

                                                                                                 > 3 
 

which yields  

ix  –  median(x)  > 3MADN(x) = 4.4474 MAD(x) 
 

For the weight of baby data, observation number 5 exceeds this threshold and hence is identified 

as an outlier.  

 

4. Sampling in the Wild and Population Size Estimation 

 

Conventional Sampling Techniques 
 

 Simple Random Sampling 
 

 Stratified Random Sampling 
 

 Systematic Sampling 
 

 Cluster Sampling 
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 Non-Probability Sampling: Internet Survey 
 

 Hybrid Sampling 

 

The problem of estimating the finite population size occurs in many branches of statistics. It has 

an wide application in the analysis of ecological data. In the last fifty years there has been a 

growing realization of the importance of a sound statistical technique in the analysis of 

ecological data. Ecologists have also recognized the importance of obtaining data in the field 

from ‘natural’ or free-ranging populations rather than ‘artificial’ or laboratory populations. So 

often the population changes that occur in the laboratory give little indication as to what happens 

in the natural state. But the study of natural populations is not easy, since the population size is 

often not known and we need to estimate the population size before any further analysis.  
 

Well-known problems of this kind are the estimation of the total number of fish in a lake, the 

estimation of the total number of birds or wild animals in a forest etc. Occasionally it is possible 

to count all the animals of a particular species in a given area. Seber (1982) presented several 

examples where animals which congregate in groups could often be photographed and counted 

later, echo-sounding was used for counting fish, fish which migrate through rivers during part of 

their life cycles could be counted individually using traps or weirs, radar had been used for 

estimating bird densities. But in reality it is impossible to count the animals over the whole area 

because of the disturbances caused or the number of personnel required. In this case a sampling 

scheme is required.  
 

Several authors had already considered the problem in the past and had suggested different 

methods of sampling with estimation procedures [see Seber (1982), Boswell et al. (1988)]. The 

basic procedure is to initially draw an object from an urn, color it and put back into the urn and 

then to draw objects randomly from that urn to recatch the colored object. This approach is 

usually known as the urn model approach. For the ecological data this approach is equivalent to 

capture, mark and recapture approach that is popularly known as the C-M-R approach. 

 

Quadrat Sampling 
 

Quadrat samplings is often used in ecological studies. If we wish to count the numbers of one, 

or of several, species of plant in a meadow to estimate population size or assess biodiversity we 

might throw a quadrat at random and do our counts within this boundary.  
 

A quadrat is usually a square light wood or metal frame of a meter or several meters side. 

Where it lands defines the search area in which we take appropriate measures of numbers of 

individual plants, biomass, or extent of ground cover. 

 

Simulation Type Sampling 
  

Recapture Sampling 
 

A wide range of sampling methods are based on the principle of initially ‘capturing’ and 

‘marking’ a sample of the numbers of a finite population and subsequently observing, in a later 

or separate independent random sample drawn from the same population, how many marked 
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individuals are obtained. This technique is known as recapture sampling which is also popularly 

known as capture-recapture sampling or capture-mark-recapture sampling. The sample 

information is then used to infer characteristics of the overall population, principally its total 

size. 
 

Points to Remember 
 

 The marking process may be multi-stage, with separate capture and recapture episodes. 
 

 Individuals in the sample can be chosen with or without replacement 
 

 The marking process may sometimes contaminate the population 
 

 Individual may be ‘trap shy’ (avoid contact) or ‘trap happy’ (eager for contact, perhaps 

seeking for food). 
 

 The population may change from capture to recapture due to births, deaths or inward or 

outward transfer. 
 

Marking Processes 
 

 Rings on the legs birds 
 

 Small radio transmitters inserted under the skin of animals 
 

 Radioisotope marking 
 

 Nicks or cuts on the fins of fish 
 

 Color marking of skin or fur 
 

 Cutting patterns in the bark of trees 
 

 Tying a colored plastic or material marker to an individual 

 

Estimation of Population Size: The Peterson and Chapman Estimators 
 

Let us suppose that an initial random sample of size n is chosen from a population of size N. 

Each of the sample is marked and the sample is then returned to the population. A second sample 

of size m is then taken and turns out to contain r of the originally marked individuals. Then the 

Peterson estimator of the population size is given by 
 

r

nm
N ˆ  

An approximate unbiased estimator of its variance is given by 
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In a similar situation the Chapman estimator of the population size is given by 
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Urn Model Approach 
 

The simplest of all of the methods of population size estimation. Initially one population unit is 

drawn at random, colored and is sent back into the target population. In the next step one unit is 

drawn at random.  If the drawn unit is the colored one then the sampling is stopped, otherwise it 

is colored and is sent back into the population. This procedure is repeated until a colored unit is 

drawn for the first time. 
 

Let S denote the effective number of trials required to get a colored unit for the first time. Then the 

estimate of the population size is obtained by  
 


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Alam, Imon and Sinha (2006) suggest a very simple approximation of the maximum likelihood 

estimator of finite population size given by 
 

MLEN̂   
32

5

2

2 ss
      for all s 

 

The following table offers a comparison between the unbiased and the ML estimate of population size. 

(Source: Alam, M. M., Imon, A. H. M. R. and Sinha, B. K (2006). Maximum Likelihood 

Estimation of a Finite Population Size, Journal of Statistical Theory and Applications, Vol. 5, No. 

3, pp. 306 – 311.) 

 

Table. Unbiased and ML estimate of finite population size for different no. of trials 
 

S = s 
UEN̂  MLN̂  S = s 

UEN̂  MLN̂  

1 1 1 26 351 342 

2 3 2 27 378 369 

3 6 5 28 406 396 

4 10 9 29 435 425 

5 15 13 30 465 455 

6 21 19 31 496 485 

7 28 26 32 528 517 

8 36 33 33 561 550 

9 45 42 34 595 583 

10 55 52 35 630 618 

11 66 62 36 666 654 

12 78 74 37 703 690 
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13 91 87 38 741 728 

14 105 100 39 780 767 

15 120 115 40 820 806 

16 136 130 41 861 847 

17 153 147 42 903 889 

18 171 165 43 946 931 

19 190 183 44 990 975 

20 210 203 45 1035 1020 

21 231 224 46 1081 1065 

22 253 245 47 1128 1112 

23 276 268 48 1176 1160 

24 300 292 49 1225 1208 

25 325 316 50 1275 1258 

 

Adaptive Sampling 
 

In adaptive sampling we often collect more samples from a location where there is higher 

concentration of objects instead of a simple random sampling. 

 

 


