
LECTURE MATERIALS 2 

ENVIRONMENTAL STATISTICS   

5. Inaccessible and Sensitive Data 

1.GPA 

2.Weight 

3. Money besides salary 

4. Income 

5.Caloria 

6. sexual habit 

7.Alchohol for minor 

8. women--abortion or not 

9. political  

10. drunk driving 

11.drug habbit 

12. stole before or not 

13. married with kid.  

14. Fin Assistance 

 

Application of Conventional Sampling Techniques for Sensitive Data 
 

Estimation of Population Total 
 

Let us suppose that the observation from the first respondent is 1x  but for some reason he/she is not 

willing to disclose that information. But he/she will not mind to pass the information a + 1x  where a 

≥ 0 is a secret number which nobody except the first respondent knows. This secret number is also 

known as hidden, base or seed number. The second respondent will have absolutely no idea about 1x  

since he/she does not know the value a. He/she then add his/her observation 2x  with a + 1x  and pass 

it to the third respondent. The third respondent will only see the value a + 1x  +  2x  but will have no 

idea about the individual 1x  or  2x . This process is continued till the last respondent includes his/her 

information and the quantity   
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which is the estimate of the population total obtained by the conventional simple random sampling 

 

Estimation of Population Mean 
 

For the estimation of population mean for sensitive data we follow exactly the same procedure 

described above. After obtaining the value 
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 - a  from the first respondent we estimate the mean 

by 
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which is again the estimate of the population mean obtained by the simple random sampling. 

 

Estimation of Population Proportion 
 

For the estimation of population proportion for sensitive data we follow similar approach described 

above. Since we are estimating proportion, the values of 1x  can take only two numbers; 0 for one 

group and 1 for the other group. It is worth mentioning that the secret number a should not take 

value 0 because if the first respondent does not have the characteristic under our study, the quantity a 

+ 1x  will be zero and then the second respondent would definitely realize that the first respondent 

did not have that characteristic. If we denote the total count by Y, the nth respondent will pass the 

value W = Y + a to the first respondent. The experimenter will get back the number W – a from the 

first correspondent and the estimate of the population proportion is then estimated by 
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which is the estimate of the population proportion obtained by the simple random sampling. 

 

Nonconventional Sampling Techniques 
 

Network Sampling: Network sampling utilizes a "word of mouth" approach of acquiring 

participants. Those who are originally recruited suggest further participants. This method allows 

researchers to access populations that are not easily identifiable, are small in number, private, poorly 

organized or socially marginalized. Examples of such populations would be sexual minorities, drug 

users, etc. 
 

The advantage of network sampling is that these hard-to-reach populations are penetrated and 

recruitment is fairly convenient and inexpensive for the researcher. Most research methods experts 

find that network sampling is just as effective as other, more random methods and rarely leads to 

validity or reliability errors. 
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There is an essential need to constantly monitor the environment for changes in level of pollutants, 

industrial by-products, etc. This process can take the form of regular sampling of a fixed set of sites, 

often arranged roughly on a grid or network. We employ network sampling in this regard.  

 

Encounter Sampling: This is a data collection procedure in which population units are included in 

the sample as they are detected or encountered. We have to consider encounter sampling when we 

have to take what is to hand or we may have to ensure optimum use of scarce resources either by 

economizing in our number of observations or by exploiting any form of circumstantial information 

that is available. 

 

Encountered Data 

 

A data set is known as encountered data when the investigator goes into the field, observes and 

records what he observes… what he/she encounters. The long-established data collection techniques 

need observations to be taken at random and under prescribed circumstances. This is often not 

possible with environmental problems – we have instead to make do with what forms or and limited 

numbers of observations can be obtained, and on the occasions and at the places they happen to 

arise. 
 

For example, climatological variables observed over time, and especially in the past, have to be 

limited to what was collected by the meteorological station; inundations and tornados occur when 

they occur! Measured pollution levels tend to be taken and published selectively, for example when 

site visits are made, perhaps because of the suspicion that levels have become rather high. 

Accessibility is an important factor here; measurements can only be taken when they are allowed to 

be taken, to the extent to which they can be afforded, when equipment is available, when they 

happen to have been taken, and so on. 

   

Length-Based or Size-Based Sampling and Weighted Distributions 
 

If we sample fish in a pond by catching them in a net, there will be encounter bias (more usually 

called size bias). This is because the mesh size will have the effect of lowering the incidence of the 

smaller fish in the catch- some will slip through the net.   
 

If we were to sample harmful industrial fibers (in monitoring adverse health effects) by examining 

fibers on a plane sticky surface by line-intercept methods, the similar problem may arise. In this case 

our data would consist of the lengths of fibers crossed by the intercept line as shown below. 
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Our interest will be in the distribution of sizes, but the sampling methods just described are clearly 

likely to produce seriously biased results. Here we are bound to obtain what are known as length-

biased or size-biased samples, and statistical inference drawn from such samples will be seriously 

flawed because they relate to distribution of measured sizes, not to the population at large (as shown 

in the following figure), which will our real interest. Thus we will typically overestimate the mean 

both in the fish and in the fiber examples, possibly to a serious extent.  

 
 

Weighted Distribution Methods 
 

Suppose X is nonnegative random variable with mean   and variance 2 , but what we actually 

sample is a random variable X
*
. A special but popular case of the size-biased distribution has the 

p.d.f. 

    /* xxfxf   
 

The variable actually sampled has expected value 
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So if we take a random sample of size n, then the sample mean of the observed data *x is biased 
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Here the problem is that we do not know the true values of   and 2 .  However, the statistic 
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Example: Consider the following 24 determinations of the copper content in wholemeal flower (in 

parts per million) 

. 

2.2 2.2 2.4 2.5 2.7 2.8 2.4 2.9 

3.03 3.03 3.1 3.37 3.4 3.4 3.4 3.5 

3.6 3.7 3.7 3.7 3.7 3.77 5.28 28.95 

 

With Outlier Without Outlier 

X
*
 1/X

*
 X

*
 1/X

*
 

2.20 0.454545 2.20 0.454545 

3.03 0.330033 3.03 0.330033 

3.60 0.277778 3.60 0.277778 

2.20 0.454545 2.20 0.454545 

3.03 0.330033 3.03 0.330033 

3.70 0.270270 3.70 0.270270 

2.40 0.416667 2.40 0.416667 

3.10 0.322581 3.10 0.322581 

3.70 0.270270 3.70 0.270270 

2.50 0.400000 2.50 0.400000 

3.37 0.296736 3.37 0.296736 

3.70 0.270270 3.70 0.270270 

2.70 0.370370 2.70 0.370370 

3.40 0.294118 3.40 0.294118 

3.70 0.270270 3.70 0.270270 

2.80 0.357143 2.80 0.357143 

3.40 0.294118 3.40 0.294118 

3.77 0.265252 3.77 0.265252 

2.40 0.416667 2.40 0.416667 

3.40 0.294118 3.40 0.294118 

5.28 0.189394 5.28 0.189394 

2.90 0.344828 2.90 0.344828 

3.50 0.285714 3.50 0.285714 

28.95 0.034542   
*x  = 4.28   *x  = 3.208  

 

 Bias Factor Corrected Mean 

Mean Based Median Based Mean Based Median Based 

With Outlier 1.33295 0.998452 3.21092 3.38524 

Without Outlier 1.04260 0.999879 3.07692 3.37041 

 

Example: If X has a Poisson distribution, then  
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so that X
* 

– 1 has a Poisson distribution  with mean  . Since   = 2 , so the bias factor becomes 












1
1 . Hence *x will be the unbiased estimator of   + 1 and thus *x – 1 will be the unbiased 

estimator of  . 

Random Encounter 

#Defective Teeth # of children Total #Defective Teeth # of children Total 

0 872 0 0 151 0 

1 82 82 1 178 178 

2 33 66 2 127 254 

3 7 21 3 25 75 

4 4 16 4 11 44 

5 1 5 5 5 25 

6 1 6 6 3 18 

 1000 196  500 594 
 

For the random sample the mean of the number of defective teeth of children is 0.196. For the 

encounter sample the mean is 1.188. The standard literature tells us that the number of defective 

teeth of children follows a Poisson distribution. Hence after the bias correction the mean of the 

number of defective teeth of children is 0.188. 
 

Many other weighted distribution methods have been studied and used. For instance, in the fish 

example with a square mesh of size 0x , the weight function is more likely a truncation and we would 

have 
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However, since the parameter is usually unknown this will often not be easy to handle. In one case it 

is straight forward.  

 

Example: Consider sampling from an exponential distribution with   
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So X
* 

– 0x  is exponential with parameter  , i.e., E(X
* 

– 0x ) =  . The bias is just (the mesh size) so 

we use *x
 
– 0x  for estimating  . 

 

Example: The following table gives square mesh of 15 fishes in a pond (in inch) 
 

387 275 228 479 381 

301 149 362 366 459 

221 73 354 88 478 

From the above table we obtain the average mesh of fish as 306.7 sq inches. If the truncation occurs 

below 36 sq inches, then the bias corrected average mesh of the fishes is  270.7 sq inches. 

 

 Composite Sampling 
 

Often we need to identify those members of as population who possess some rare characteristic or 

condition Sometimes the condition is of a ‘sensitive’ form, and individuals may loath to reveal it. 

Alternatively it may be costly or difficult to assess each member separately. 
 

One possibility might be to obtain material or information from a large group of individuals, to mix 

it all together and to make a single assessment for the group as a whole. This assessment will reveal 

the condition if any one of the group has the condition. If it does not show up in our single test we 

know that all our members are free of that condition. A single test may clear 1000 individuals! 
 

This is the principle behind what is known as composite sampling. It is also known as aggregate 

sampling or grab sampling. Of course, our composite sample might show the condition to be present. 

Then we know nothing about which, or how many, individuals are affected. But that is another 

matter that we will discuss later. 
 

Early examples of group testing were concerned with the prevalence of insects carrying a plant virus 

and of testing US servicemen for syphilis in the Second World War. The material collected from 

each member of a sample is pooled, and a single test is carried out to see if the condition is present 

or absent; for example, blood samples of patients might be mixed together and tested for the 

presence of the HIV virus. 
 

 
 

Full Retesting 
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Applications of composite sampling cover a broad range, from testing for presence of disease to 

examining if materials fail to reach safety limits. Specific examples include: remedial clean-up of 

contaminated soil, geostatistical sampling, examining foliage and other biological materials, 

screening of dangerous chemicals, groundwater monitoring, and air quality. 

 

 

Attribute Sampling 
 

Suppose a population has a proportion p with characteristic A and we take a random sample of size 

n, but, instead of observing the individual values separately, we test the overall sample (in composite 

form) once only for the presence of the characteristic A in at least one of the sample members. Then 
 

P(A encountered) =  np 11 . 
 

If we do not find A, we conclude that no members of the sample of size n have the characteristic.  
 

If we find A, and we need to identify precisely which sample members have the characteristic, we 

must examine the sample in more detail. The most obvious approach is to retest each sample 

separately.  
 

Note that it requires some care. If we have used all the sample material for the composite test, we 

would not subsequently examine each individuals separately without resampling. It would be more 

prudent, and this is common practice, to use only some of the material in the composite test and to 

retain some from each individual (so-called audit samples) for later use if necessary. 
 

In the full retesting approach we will need either one test (if negative) or n + 1 tests (if positive) to 

identify precisely which sample members are affected. We observe that in general we need on 

average  npnn  1)1(  tests. So if p = 0.0005 and n = 20, just 1.2 tests are required on average. 
 

 
 

Sudden Death Retesting 
 

If the initial test of the composite sample shows that A is present then various other strategies can be 

taken to identify the affected samples. We can employ group retesting or cascading approach in this 

regard. Instead of testing each individual we might retest in composite subsamples. A version of this 

is known as sudden death retesting. Here following a positive first test, we would test the 

individuals one at a time until we find the first affected individual and then conduct a composite test 
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on the remainder. If the composite test is negative we stop the whole process and say we have only 

one affected sample. If the composite test is positive we repeat the process and so on. 
 

In group retesting we divide the sample group of size n into k subgroups, knnn ,...,, 21  if the first 

overall composite test is positive. Each of the subgroups is treated as a second-stage composite 

sample. Each subgroup is then tested as for full retesting and the process terminates.  
 

  
 

Group Retesting 

 

A special modification of group retesting is known as cascading where we adopt a hierarchical 

approach, dividing each positive group or subgroup into two parts and continue testing until all 

positive samples have been identified. 
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Cascading 

 

Example: On an urban site previously used for chemical processing, 128 soil samples are chosen 

from different locations to test for the presence of a particularly noxious substance.  
 

If we opt for full retesting we know that on average we must carry out 129 – 128  128
1( p  tests.  

 

Under cascading it is more difficult to calculate the average number. If only one sample is 

contaminated we need exactly 15 tests. If all samples are contaminated we need 128   = 255 tests. 
 

Which alternative is more economical depend on the value of p. If p is small sudden death is perhaps 

the best choice. Otherwise group retesting or cascading should be used. 
 

For estimating the value of p, we could test m composite samples. Suppose r of them exhibit 

characteristic A, then r is the binomial B[m,  np 11 ] so that since r/m is the MLE of  np 11 , 

an estimator of p is provided by  
 

  n
mrp

/1* /11   
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Continuous Variables 
 

A modified composite sampling scheme can be considered if X is a continuous random variable. For 

example, X can measure the pollution levels in a river, and we want to know if any observed ix  in a 

sample of size n are illegally high values above some control value or standard, Hx .  For a 

composite sample of size n, we compute x .  
 

If x  < Hx /n, we declare all observations to be satisfactory. 
 

If x  ≥ Hx /n, we would need to retest all observations (or smaller composite subsamples). 
 

This procedure is known as ‘rule of n’ composite sampling procedure. 

 

Example: Consider the following 24 determinations of the copper content in wholemeal flower (in 

parts per million). 

 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 

2.2 2.2 2.4 2.5 2.7 2.8 2.4 2.9 

3.03 3.03 3.1 3.37 3.4 3.4 3.4 3.5 

3.6 3.7 3.7 3.7 3.7 3.77 5.28 28.95 

  

If the standard copper content level is 5.00 (in parts per million) we can use all previously discussed 

methods to find the contaminated sample. 

 

Full Retesting 

Observation Copper Content 

1 28.95 

2 13.03 

3 3.6 

4 3.28 

5 2.2 

6 3.03 

7 3.7 

8 3.77 

9 2.4 

10 3.1 

11 3.7 

12 3.37 

13 2.5 

14 2.4 

15 3.7 

16 2.7 

 

Mean =5.339375 
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Sudden Death 

Observation Copper Content 

1 28.95 
 

2 13.03 13.03 

3 3.6 3.6 

4 3.28 3.28 

5 2.2 2.2 

6 3.03 3.03 

7 3.7 3.7 

8 3.77 3.77 

9 2.4 2.4 

10 3.1 3.1 

11 3.7 3.7 

12 3.37 3.37 

13 2.5 2.5 

14 2.4 2.4 

15 3.7 3.7 

16 2.7 2.7 

Mean = 5.339375 3.765333 
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Ranked-Set Sampling 
 

In many areas of environmental risk such as radiation (soil contamination, disease clusters, air-borne 

hazard) or pollution (water contamination, nitrate leaching, root disease of crops) we commonly find 

that the taking of measurement can involve substantial scientific processing of materials and 

correspondingly high attendant cost. Ranked-set sampling is often used to draw statistical inference 

as expeditiously as possible with regard to containing the sample costs. 
 

A simple example of the problem arises even when we wish to estimate as basic a quantity as a 

population mean. It could operate in this way. If we want a sample of size 5 we would chose 5 sites 

at random, but rather than measuring pollution at each of them we would take the largest pollution 

Cascading 
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level. We then repeat the process by selecting a second random set of five sites and measure the 

second largest pollution level amongst these, and so on, until we get the lowest pollution level in the 

final random set of five sets. The resulting ranked-set sample of size 5 is then used for the estimation 

of the mean. Such an approach can be used to estimate a measure of dispersion, a quantile or even to 

carry out a test of significance, or to fit a regression model.  
 

The ranked set sampling approach can be described in the following way. We consider a set of n 

observations of a random variable X. These would yield observations in the form 

 

11x  21x  31x   
11nx  1nx  

12x  22x  32x   
12nx  2nx  

13x  23x  33x   
13nx  3nx  

      

11 nx  12 nx  13 nx   
11  nnx  1nnx  

nx1  nx2  nx3   
nnx 1  nnx  

 

Instead of considering all observations we would consider only one measured observation in each 

subsample, the ith ordered value in the ith sample. The ranked-set sample is then obtained as the 

diagonal elements of the following table, i.e. )1(1x , )2(2x , …, )(nnx . 

 

)1(1x  )1(2x  )1(3x   
)1(1nx  )1(nx  

)2(1x  )2(2x  )2(3x   
)2(1nx  )2(nx  

)3(1x  )3(2x  )3(3x   
)3(1nx  )3(nx  

      

)1(1 nx  )1(2 nx  )1(3 nx   
)1(1  nnx  )1( nnx  

)(1 nx  )(2 nx  )(3 nx   
)(1 nnx   )(nnx  

 

Then the ranked-set sample mean is defined as 
 


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It is easy to show that  x  is an unbiased estimator of the population mean   and 
 

Var( x ) ≤ Var( x ) 
 

where x  is the traditional sample mean of all 2n  observations. 

 

Example: The following table gives square mesh of 16 fishes in a pond (in inch) 
 

587 149 479 381 

301 73 366 459 

221 228 254 478 

275 462 88 65 
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For this data the ranked set sample is  

 

221 73 88 65 

275 149 254 381 

301 228 366 459 

587 462 479 478 

 
Descriptive Statistics: Ranked Set  
 
Variable    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Ranked Set  4   0  303.5     73.6  147.2    149.0  167.0   293.5  450.0 

 

Variable    Maximum 

Ranked Set    478.0 

 
Descriptive Statistics: Original Set  
 
Variable       N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Original Set  16   0  304.1     39.8  159.2     65.0  167.0   330.0  441.8 

 

Variable      Maximum 

Original Set    587.0 

 

6. Generalized Linear Models 
 

A wide range of non-linear models can be accommodated under the label generalized linear model. 

One popular model of this kind often used in environmental studies is the dose-response model. In 

this model a particular level of exposure (dose) of a stimulus may cause an effect in the response of 

an affected subject. The stimulus may be environmentally encountered (as in the level of sulphur 

dioxide in the air) or environmentally administered (as in the dose given to plants to kill of 

infestation or to a patient to ease a condition). 
 

The response may be quantitative (as in the effect on a biomedical blood measure of a patient), or 

qualitative (in healing the condition or killing the insects). If it is qualitative, we may have what is 

known as a quantal response model. Such models are widely employed in environmental, 

epidemiological and toxicological studies. 
 

Example: Suppose we consider the effects of applying different dose levels (in appropriate units) of 

a trial insecticide for possible control of an environmentally undesirable form of infestation and 

obtain the following data on number of insects treated and killed at different application levels of the 

insecticide. 
 

Level of Insecticide Insects Treated Insects Killed Proportion Killed 

1.6 10 1 0.100000 

3.0 15 2 0.133333 

4.0 12 3 0.250000 

5.0 15 5 0.333333 

6.0 13 6 0.461538 

7.0 8 5 0.625000 

8.0 17 13 0.764706 
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9.6 10 8 0.800000 

 

Clearly the proportion killed tends to increase with the level (dose) of the applied insecticide, but it 

seems to do so in a non-linear way. 

 

Toxicology Concerns 
 

Dose-response relationships are of particular interest in toxicology, where we wish to examine how 

effective or toxic is the influence of a certain stimulus on the behavior of a response variable. The 

subject may be human, animal or plant, a community of such beings or even the entire ecosystem.  
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Dose-response effects are often summarized by certain features of the dose-response relationship. 

Commonly employed measures include those known as the median lethal dose (LD) LD50 level, the 

LD5 level and the LD95 level: the doses that kill 50%, 5% and 95% of the population, respectively. 
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Depending on application the various measures LD50, LD5, LD95 may be of more or less interest. For 

example, if we are testing a new insecticide we will want to be effective in controlling the offending 

agent and we will probably concentrate on the LD50 to reflect that the agent is under control. If we 

are concerned about the effect of an environmental pollutant on human health, we will want this 

effect to be low and will focus on the LD5 or even lower effect measures such as the NOEL (no 

obvious effect level) or the NOAEL (no obvious adverse effect level). 

 

An alternate and related approach applied to the dose-response data across environmental, 

epidemiological and general medical interests is that of benchmark analysis. The benchmark dose 

(BMD) or benchmark level is that dose or exposure level which yields a specific increase in risk 

compared with incidence in an unexposed population. Such increase is called benchmark risk 

(BMR). Benchmark analysis proceeds by specifying the BMR and applying dose-response analysis 

to estimate the BMD in the form of statistically inferred lower bound. The assumed dose-response 

model often takes the form of a binary quantal response model- where one of two specific 

qualitative outcomes must arise at any dose for any individual.  

 

Quantal Response 
 

Let us define a model for the quantal response data. Morgan (1992) proposed that the response 

variable Y should be a binomial, Y ~ B[n, p(x)], with mean np(x) depending on the level or dose x. 

We will need to assume that p = F(x), where F(x) is a distribution function. This is often referred to 

as the distribution function of the tolerance distribution. Thus F(x) takes a general shape as shown 

below. It is monotonic non-decreasing in x and ranges from 0 to 1.  
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One form commonly used is the normal model or probit model defined as  
 

 xxF  )(1  
 

where  z  is the distribution function of the standard normal distribution. Another is the logistic 

model as defined in Chapter 7. In the dose-response study we often consider the ln (natural 

logarithm) dose and the model becomes 
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For the logit case, it is common to use the transformation 
 

x
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xP  
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
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
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)(1

)(
ln)(  

 
Probit Analysis: Insects Killed, Insects Treated versus Log Level  
 
Distribution:   Logistic 

 

Response Information 

 

Variable         Value      Count 

Insects Killed   Event         43 

                 Non-event     57 

Insects Treated  Total        100 

 

Estimation Method: Maximum Likelihood 

Regression Table 

                     Standard 

Variable       Coef     Error      Z      P 

Constant   -4.60158   1.09142  -4.22  0.000 

Log Level   2.60289  0.617895   4.21  0.000 

Natural 

Response          0 

 

Log-Likelihood = -54.913 

 

Goodness-of-Fit Tests 

 

Method    Chi-Square  DF      P 

Pearson      2.31729   6  0.888 

Deviance     1.86373   6  0.932 

 

Tolerance Distribution 

 

Parameter Estimates 

                      Standard    95.0% Normal CI 

Parameter  Estimate      Error     Lower     Upper 

Location    1.76787  0.0895252   1.59241   1.94334 

Scale      0.384188  0.0912017  0.241256  0.611800 
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Table of Percentiles 

 

Standard    95.0% Fiducial CI 

Percent  Percentile      Error       Lower     Upper 

1   0.0024829   0.418734    -1.51606  0.568583 

2    0.272682   0.356317    -1.01417  0.756397 

3    0.432398   0.319744   -0.718144  0.868057 

4    0.546903   0.293733   -0.506334  0.948530 

5    0.636655   0.273504   -0.340634   1.01193 

6    0.710766   0.256931   -0.204076   1.06455 

7    0.774098   0.242883  -0.0876118   1.10974 

8    0.829553   0.230684   0.0141569   1.14953 

9    0.879003   0.219900    0.104712   1.18519 

10    0.923726   0.210235    0.186430   1.21764 

20     1.23528   0.146607    0.747850   1.45147 

30     1.44235   0.111599     1.10470   1.62320 

40     1.61210  0.0930010     1.37227   1.78892 

50     1.76787  0.0895252     1.58084   1.97797 

60     1.92365   0.100575     1.74894   2.20751 

70     2.09340   0.124571     1.90097   2.48877 

80     2.30047   0.162807     2.06528   2.85303 

90     2.61202   0.228350     2.29504   3.41853 

91     2.65675   0.238163     2.32717   3.50056 

92     2.70619   0.249091     2.36255   3.59141 

93     2.76165   0.261429     2.40205   3.69346 

94     2.82498   0.275613     2.44697   3.81020 

95     2.89909   0.292319     2.49931   3.94703 

96     2.98884   0.312682     2.56244   4.11300 

97     3.10335   0.338829     2.64264   4.32509 

98     3.26307   0.375544     2.75401   4.62140 

99     3.53326   0.438124     2.94150   5.12361 

 

 

Level of Insecticide Insects Treated Insects Killed Log Level Probability 

1.6 10 1 0.47000 0.032983 

3.0 15 2 1.09861 0.149057 

4.0 12 3 1.38629 0.270279 

5.0 15 5 1.60944 0.398339 

6.0 13 6 1.79176 0.515538 

7.0 8 5 1.94591 0.613823 

8.0 17 13 2.07944 0.692318 

9.6 10 8 2.26176 0.783391 
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The dose-response curve and the table of percentile are given. They show that for this data we obtain 

LD50 = 1.76787, LD5 = 0.63667 and LD95 = 2.89909. 
 

7. Bioassay 
 

Bioassay, or biological assay, is a body of methodology concerned with assessing the potency of a 

stimulus (e.g., a drug, a hormone, or radiation) in its effect on (usually) biological organisms. 

Biological assays are methods for the estimation of nature, constitution, or potency of a material (or 

of a process) by means of the reaction that follows its application to living matter. 

 

Qualitative Assays Quantitative Assays 

These do not present any statistical problems. 

We shall not consider them here. 

These provide numerical assessment of some 

property of the material to be assayed, and 

pose statistical problems. 

 

 

Definition: An assay is a form of biological experiment; but the interest lies in comparing the 

potencies of treatments on an agreed scale, instead of in comparing the magnitude of effects of 

different treatments. 

 

This makes assay different from varietal trials with plants and feeding trials with animals, or clinical 

trials with human beings. The experimental technique may be the same, but the difference in purpose 

will affect the optimal design and the statistical analysis. Thus, an investigation into the effects of 

different samples of insulin on the blood sugar of rabbits is not necessarily a biological assay; it 

becomes one if the experimenter’s interest lies not simply in the changes in blood sugar, but in their 

use for the estimation of the potencies of the samples on a scale of standard units of insulin. Again, a 

field trial of the responses of potatoes to various phospatic fertilizers would not generally be 

regarded as an assay; nevertheless, if the yields of potatoes are to be used in assessing the potency of 

a natural rock phosphate relative to a standard superphosphate, and perhaps even in estimating the 
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availability of phosphorus in the rock phosphate, the experiment is an assay within the terms of the 

description given herein. 

 

History of biological assay 

 

In the Bible, in the description of Noah’s experiment from his ark by sending a dove repeatedly until 

it returns with an olive leaf, by which Noah knows or estimates the level of receding waters from the 

Earth’s grounds, we find that it has all the three essential constituents of an assay – namely 

“stimulus” (depth of water), “subject” (the done) and “response” (plucking of an olive leaf). 

 

Serious scientific history of biological assay began at the close of 19th century with Ehrlich’s 

investigations into the standardization of diphtheria antitoxin. Since then, the standardization of 

materials by means of the reactions of living matter has become a common practice, not only in 

pharmacology, but in other branches of science also, such as plant pathology. However the assays 

were put on sound bases only since 1930’s when some statisticians contributed with their refined 

methods to this area.  

 

Structure of a Biological Assay 

 

The typical bioassay involves a stimulus (for example, a vitamin, a drug, a fungicide), applied to a 

subject (for example, an animal, a piece of animal tissue, a plant, a bacterial culture). The intensity 

of the stimulus is varied by using the various “doses” by the experimenter. Application of stimulus is 

followed by a change in some measurable characteristic of the subject, the magnitude of the change 

being dependent upon the dose. A measurement of this characteristic, for example, a weight of the 

whole subject, or of some particular organ, an analytical value such as blood sugar content or bone 

ash percentage, or even a simple record of occurrence or non-occurrence of a certain muscular 

contraction, recovery from symptoms of a dietary deficiency, or death — is the response of the 

subject. 

 

Types of Bioassays 
 

Three main types (other than qualitative assays)are : 
 

(i) DIRECT ASSAYS 
 

(ii) INDIRECT ASSAYS 

 

Direct Assays 
 

We shall first take up DIRECT ASSAYS. In such assays doses of the standard and test preparations 

are sufficient to produce a specified response, and can be directly measured. The ratio between these 

doses estimates the potency of test preparation relative to the standard. If SZ  and TZ  are doses of 

standard and test preparations producing the same effect, then the relative potency   is given by 
 

T

S

Z

Z
  
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Thus, in such assays, the response must be clear-cut & easily recognized, and exact dose can be 

measured without time lag or any other difficulty. 
 

A typical example of a direct assay is the “cat” method for the assay of digitalis. Preparation is 

infused until its heart stops (causing death). The dose is immediately measured. It can take two basic 

forms: estimating stimulus response; and evaluating the potency of one stimulus (e.g., a new drug or 

pollutant) relative to another (a ‘standard’ or familiar form).  
 

Preparations Tolerances Mean 

Strophanthus A (Test Prep.) (in .01 cc/kg.) 1.55, 1.58, 1.71, 1.44, 1.24, 1.89 2.34 1.68 

Strophanthus B (Stan. Prep.) (in .01 cc/kg.) 2.42, 1.85, 2.00, 2.27, 1.70, 1.48, 2.20 1.99 

 

Hence the estimated relative potency is ̂  = 1.99/1.68 = 1.18 
 

Thus 1 cc of tincture A is estimated to be equivalent to 1.18 cc of tincture B. 

 

Indirect Assays 

 

The estimation of stimulus response is often done using the generalized linear models. Let us now 

consider the problem of relative potency. 
 

Regression methods and maximum likelihood are used extensively in bioassay. Consider two 

stimuli, T and S. They are said to have similar potency if the effect on a response variable Y of some 

level Z of the stimulus is such that there is a constant scale factor  such that 
 

YT(Z) = YS(  Z) 
 

This implies that the stimulus-response relationship is essentially the same for both of the stimuli; 

we have only to scale the dose level by a simple multiplicative factor to obtain identical relationship. 
 

In many cases it proves reasonable to assume that Y has a linear regression relationship with       x = 

ln z. Then we can write 
 

E[YT(Z)] = zx ln   
 

and if S is similar in potency to T, we have 
 

E[YS (Z)] = zz lnlnln    
 

Thus we have two linear regression models of Y on ln z with the same slope but different intercepts. 

So we could seek to test if two stimuli have similar potency by carrying out a hypothesis of 

parallelism of the two regression lines; if this is accepted we can proceed to estimate  . This 

procedure is known as a parallel-line assay; it assumes that the regression lines are parallel and 

separated by a horizontal distance  
 

TS  ln  
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Suppose we have random samples of size Tn  and Sn  of stimulus and response for the two stimuli, T 

and S. If the errors are uncorrelated and the error distribution is normal with constant variance then 

the maximum likelihood (or the least squares) estimators need to be chosen to minimize 
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Example: The following table considers a bioassay problem concerning two treatment regimes 

applied to laboratory rats.  
 

Table. Bioassay data on rats: uterine weights (coded) 
 

 

Dose 

Standard Treatment S New Treatment T 

0.2 0.3 0.4 1.0 2.5 

 73 77 118 79 101 

 69 93 85 87 86 

 71 116 105 71 105 

 91 78 76 78 111 

 80 87 101 92 102 

 110 86  92 107 

  101   102 

  104   112 

 

For this data we obtain 
 






21

1

nn

i

ii yx =  -1375.95,  




21

1

2
nn

i

ix =  38.0528, Ty  = 94.64, Tx =  0.524, Sy = 90.58, Sx  = -1.2563 

 

Tn = 14,   Sn  = 19, ̂ =  21.7673, T̂  = 83.2340, S̂  = 117.926, ̂ = 4.92233 
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Repeated Measures 
 

Example: The following table gives plasma floride concentration for litters of baby rats of different 

ages at different times after injectionof different doses of a drug.  

 

Age (Days) Dose (mg) Post-injection time (min) 

  15 30 60 

6 0.50 4.1 3.9 3.3 

6 0.50 5.1 4.0 3.2 

6 0.50 5.8 5.8 4.4 

6 0.25 4.8 3.4 2.3 

6 0.25 3.9 3.5 2.6 

6 0.25 5.2 4.8 3.7 

6 0.10 3.3 2.2 1.6 

6 0.10 3.4 2.9 1.8 

6 0.10 3.7 3.8 2.2 

11 0.50 5.1 3.5 1.9 

11 0.50 5.6 4.6 3.4 

11 0.50 5.9 5.0 3.2 

11 0.25 3.9 2.3 1.6 

11 0.25 6.5 4.0 2.6 

11 0.25 5.2 4.6 2.7 

11 0.10 2.8 2.0 1.8 

11 0.10 4.3 3.3 1.9 

11 0.10 3.8 3.6 2.6 

 

Solve the problem using the split-plot design 

 


